
A BEGINNER’S GUIDE

TO

DEVELOPMENT

IN

Authors:
PRAVEEN KAMATH
LIMING JIANG

Project Supervisor:
ASIF USMANI

mailto:praveen.kamath@hotmail.com
mailto:liming.jiang@ed.ac.uk
mailto:asif.usmani@ed.ac.uk

Contents

1 BRIEF OVERVIEW 4

2 OPENSEES GOALS, FEATURES and MOTIVES 5
2.1 Goals: . 5
2.2 Features: . 5
2.3 Motive behind open source software development: . 5

3 GENESIS OF OPENSEES FRAMEWORK 7

4 PREREQUISITES FOR ASPIRING OPENSEES DEVELOPERS 8

5 ONLINE RESOURCES ON OPENSEES 9
5.1 Official Webpage . 9

6 STRUCTURE OF OPENSEES 10
6.1 General . 10
6.2 Additional tabs in the API . 10

7 DOWNLOAD AND INSTALL MICROSOFT VISUAL STUDIO
AND TCL/TK 11
7.1 Microsoft Visual Studio . 11
7.2 Tickle ToolKit (Tcl/Tk) . 13

8 DOWNLOADING OPENSEES SOURCECODE USING TortoiseSVN 14
8.1 Downloading TortoiseSVN . 14
8.2 Downloading the OpenSees Source Code . 15

9 WORKING WITH OPENSEES SOURCE CODES 18

10 COMMON ERRORS IN MS VISUAL STUDIO AND THEIR SOLUTION 21

11 ADDING YOUR OWN CODE TO OPENSEES 26
11.1 Generating a dynamic link library (*.dll) using Microsoft Visual Studio 26
11.2 Alternate and simple method to add a new material (with example) 29
11.3 Testing the Newly Added Material (or a piece of code) . 30

12 WORKING WITH ‘quickMain’ 31

13 ADDING A NEW CODE TO OPENSEES
(The quickMain Method) 33
13.1 Basic Steps . 33
13.2 Inheritance diagram of an element class: . 33

1

OpenSees Developers Group IM Ver. 2

13.2.1 The Element Class: . 34
13.3 Example - Truss2D . 35

13.3.1 Header . 35
13.3.2 Implementation . 37
13.3.3 Include Directives . 37
13.3.4 Static Variables . 38
13.3.5 Constructors . 38
13.3.6 Destructor . 40
13.3.7 Methods dealing with nodes . 42
13.3.8 Methods dealing with current state . 42
13.3.9 Methods to return Tangent Matrix . 43
13.3.10 Methods to return resisting force . 44
13.3.11 Methods dealing with output . 45
13.3.12 Methods dealing with databases and parallel processing 47

14 ADDING A Tcl COMMAND TO OPENSEES 50
14.1 Creating your own command . 50
14.2 Example for adding Tcl commands for fire models . 51

15 RUNNING OPENSEES IN LINUX 57
15.1 General Linux Commands (useful while running OpenSees) . 57

15.1.1 Identity used for obtaining permissions or permission types 58
15.1.2 Permission identity for user groups . 58
15.1.3 Permutation of numbers used to set permissions . 58

15.2 Installing Necessary Packages to run OpenSees . 59
15.3 Adding Your Own Code to OpenSees . 60

16 FAQ 62

Praveen Kamath & Liming Jiang Page 2

OpenSees Developers Group IM Ver. 2

Disclaimer:

The document is written to guide the absolute beginners working on development of OpenSees. It includes download, install, run and debug

OpenSees source code. It does not cover the working instructions for end users of the framework. It may / may not work on your installed copy of

Microsoft Visual Studio for a number of reasons. The solutions mentioned in this document have been successfully tried and tested on Microsoft

Visual Studio Professional 2010. Email the authors at praveen.kamath@hotmail.com or liming.jiang@ed.ac.uk if you have any questions or

comments or concerns. For further information on OpenSees Developers Group, log on to our wiki page: https://www.wiki.ed.ac.uk/

display/opensees/UoE+OpenSees.

Praveen Kamath & Liming Jiang Page 3

mailto:praveen.kamath@hotmail.com
mailto:liming.jiang@ed.ac.uk
https://www.wiki.ed.ac.uk/display/opensees/UoE+OpenSees

Section 1

BRIEF OVERVIEW

THE ACRONYM OpenSEES - Open System for Earthquake Engineering Simulation.

I OpenSees is a software framework for building finite element applications in structural and
geotechnical systems.

I OpenSees developers group at the University of Edinburgh is working on Thermo-Mech.
version of OpenSees to facilitate the analysis of Structures in Fire.

I The thermo-mechanical analysis codes are written using the Object Oriented Language,
C++, along with additional commands for the scripting language Tcl/Tk.

I SIF Builder stands for Structures in Fire Builder, which is a project being developed by the
research group to analyse the structures under real fire scenarios.

I OpenSees enables a user to run both traditional and parallel finite element applications for
simulating the response of structural and geotechincal systems subjected to earthquakes and
other extreme loading conditions.

4

Section 2

OPENSEES GOALS, FEATURES and
MOTIVES

2.1 Goals:

I Open source finite element code development

I Education

I Interactive web-based communication of users and developers

I Provide supercomputing platform for users and developers through NEESHub’s cloud computing
resources

2.2 Features:

OpenSees source codes are available for free for further development. The interpreters provide
flexibility to:

I Create pre and post processors for OpenSees Interpreters

I Create new modules like elements, materials, solvers, integrators for OpenSees interpreters

I Program and validate new modules with user specified benchmarks

I Enable a wider capability to existing framework to account for pragmatic structural engineering
problems

2.3 Motive behind open source software development:

I Linus’s Law: “given enough eyeballs all bugs are shallow”

I Free software attracts users

I New ideas can be explored and built upon if they are available to be scrutinized

5

OpenSees Developers Group IM Ver. 2

I Many software developed in civil engineering in research institutions are lost when the
graduate students leave

I Software developed in civil engineering research requires greater testing and flexibility

Praveen Kamath & Liming Jiang Page 6

Section 3

GENESIS OF OPENSEES FRAMEWORK

OpenSees emerged out of ‘Object oriented finite element programming: frameworks for analysis,
algorithm and parallel computing” (1997), a Ph.D thesis authored by Frank McKenna at the
University of California at Berkeley. Ever since its inception, several modifications have been
made to the framework, as a sign of incessant development though the original design has remained
the same.

7

Section 4

PREREQUISITES FOR ASPIRING
OPENSEES DEVELOPERS

I Working knowledge of C++: a statically typed, free-form, multi-paradignm, compiled,
general-purpose programming language. It is regarded as a “middle-level” language, as it
comprises a combination of both high-level and low-level language features

I A fairly well understanding of the Object-Oriented programming concepts

I Most commonly the structure and usage of classes, constructors, destructors, overloading
functions and classes, class pointers, friendship and inheritance, polymorphism, virtual members,
virtual classes, virtual functions, namespaces, memory management and other widely used
terms in object oriented programming.

8

Section 5

ONLINE RESOURCES ON OPENSEES

OpenSees development has taken a new shape in the history of free civil engineering software with
its powerful documentation and user-friendly instructive resources from National Earthquake
Engineering Centre (NEES). It enables users and developers from across the globe to witness
the powerful software framework and utilize in their own way either using it to empower their
own computational efforts or contribute to the evolving next generation framework in Earthquake
Engineering.

5.1 Official Webpage

OpenSees offers extensive online resources for both users and developers. Following links summarises
different features available on OpenSees web portals of both Berkeley and Edinburgh.

Official Berkeley OpenSees Homepage: http://opensees.berkeley.edu/
OpenSees homepage is typically designed with a very simple and user-friendly interface with
several options to guide a user based on their area of interest. Three main tabs which spur interest
in any aspiring OpenSees scholar are User, Developer and Parallel.
The vertical panel on the left of the webpage consists of the following.
OpenSees Wiki: Wikipedia supported free resource for opensees user and developer.
Message Board: An interactive Q&A online forum which powers numerous users and developers
at various research and academic institutes around the world to post queries, which is the best
alternative to learn and exchange views on OpenSees development.
User Doc: Provides access to most popular and advanced user manuals online.
Download: A protected link for registered users to download latest version of OpenSees: executable
binary and Activestate Tcl/Tk.
Source Code: A user friendly, interactive version of source code browser powered by Web Subversion
Repositories which enables user to browse a complete structured source codes in the OpenSees
project.

9

https://nees.org/
https://nees.org/
http://opensees.berkeley.edu/
http://opensees.berkeley.edu/OpenSees/user/index.php
http://opensees.berkeley.edu/OpenSees/developer/index.php
http://opensees.berkeley.edu/OpenSees/parallel/parallel.php
http://opensees.berkeley.edu/wiki/index.php/Main_Page
http://opensees.berkeley.edu/community/index.php
http://opensees.berkeley.edu/wiki/index.php/OpenSees_User
http://opensees.berkeley.edu/OpenSees/user/download.php
http://opensees.berkeley.edu/WebSVN/listing.php?repname=OpenSees&path=%2Ftrunk%2FSRC

Section 6

STRUCTURE OF OPENSEES

6.1 General

Before getting started with OpenSees development, it is imperative to have minimal knowledge
of the project architecture. The program is structured by writing several hundreds of individual
classes and their sub-classes. OpenSees application program interface (API) provides a vital
reference to understanding the overall structure of the framework. OpenSees API consists of
classes from the OpenSees framework, arranged in alphabetical order. Click on each class to
open a doxygen generated document which has the following features.

I Pre-processor directives, header file (*.h) and source files (*.cpp) for the class

I Inheritance diagram for the class

I List of all the members in the class

I List of public member functions

I Constructor and destructor documentation

I Member function documentation (Implemented in - - - Referenced by)

6.2 Additional tabs in the API

Namespaces - Commonly used namespaces.
Files - List of all the files in the OpenSees project and their path.
Directories - Directory hierarchy.
Class List - List of all the classes arranged automatically.
Class Hierarchy - Sorted inheritance list of classes.
Class Members - List of all class members with links of their classes.

10

http://opensees.berkeley.edu/OpenSees/api/doxygen2/html/classes.html
http://www.stack.nl/~dimitri/doxygen/index.html

Section 7

DOWNLOAD AND INSTALL
MICROSOFT VISUAL STUDIO
AND TCL/TK

The source codes are written in the Object oriented language, C++. The source codes for OpenSees
were developed using Microsoft Visual Studio 2005. The source codes can also be compiled using
higher versions Microsoft Visual Studio 2008 2010, 2012 and 2013. It is advisable to stick to
version 2008 / 2010 to avoid compatibility issues during the conversion of the solution (*.sln)
files. The following steps show the instructions to download and install the ‘absolute essentials’
for running OpenSees on a Windows Platform, Microsoft Visual Studio and Tcl/Tk.
If you are a student / researcher / faculty of a University, all software from Mucrosoft may be
downloaded from Microsoft Dreamspark.

7.1 Microsoft Visual Studio

Step 1. Before signing up for an individual account, verify your student status using your
school email Address.
Note: It is encouraged to merge the dreamspark account with Microsoft Outlook account (if
you already have one)

11

https://www.dreamspark.com/Default.aspx

OpenSees Developers Group IM Ver. 2

Step 2. Upon completing the verification, you should receive the following greeting.

Step 3. Click on Download Software tab and then click on go to the student software catalog

Step 4. Browse and select for the desired version of Microsoft Visual Studio Professional
under Developer & Designer Tools.
Note: Choose ver 2008 / ver 2010.

Step 5. Click on Get Key button and note down the 16 digit product key before the download

Step 6. Click on Download and follow the onscreen instructions to download the software.

Praveen Kamath & Liming Jiang Page 12

OpenSees Developers Group IM Ver. 2

An iso image (*.iso) of Microsoft Visual Studio will be downloaded to your computer

Step 7. The file can be opened using a virtual disk application such as WinCDEmu (Download
WinCDEmu here)

Step 8. Open the WinCDEmu mounted virtual drive (V:) from My Computer and run setup.exe
to Install Microsoft Visual Studio Professional.
Note: Keep complete install as the default option.

7.2 Tickle ToolKit (Tcl/Tk)

Step 1. Download tcl/tk X.X.XX from the OpenSees Berkeley portal

Step 2. Double click on the downloaded version of tcl/tk
Note: In most of the windows 7 PCs, right click on the file and click Run as Administrator

Step 3. Select Next (at bottom right) −→ I accept the license agreement and select the Tcl
folder for installation.
Note: Make sure you Install Tcl in C:\ProgramFiles\Tcl Folder. This folder does not
exist by default and hence be created. Also, by default Tcl tends to install in C:\Tcl. This
path needs to be changed to C:\ProgramFiles\Tcl.

Praveen Kamath & Liming Jiang Page 13

http://wincdemu.sysprogs.org/
http://wincdemu.sysprogs.org/download/
http://wincdemu.sysprogs.org/download/
http://opensees.berkeley.edu/OpenSees/user/download.php

Section 8

DOWNLOADING OPENSEES
SOURCECODE USING TortoiseSVN

OpenSees source codes are available for download from a revision and version control system
developed by Apache Subversion (SVN). To download any package from a version control system,
a subversion client is needed. Following steps will guide you to download the OpenSees source
codes using TortoiseSVN client.

8.1 Downloading TortoiseSVN

Step 1. Download the version control / source control software TortoiseSVN, using the link
given below (based on ApacheTM Subversion (SVN)r), depending on whether your version
of windows is 32 bit / 64 bit.
http://tortoisesvn.net/downloads.html

Step 2. Run the downloaded file and install the subversion package by following onscreen
instructions.TortoiseSVNTM

14

https://subversion.apache.org/
http://tortoisesvn.net/downloads.html

OpenSees Developers Group IM Ver. 2

8.2 Downloading the OpenSees Source Code

Step 1. Click the following link or Copy and Paste it on your browser
https://www.wiki.ed.ac.uk/display/opensees/UoE+OpenSees

Step 2. Click on Download under SPACE SHORTCUTS located on the left hand panel as
shown or on the bottom of the page.

Step 3. Copy highlighted part of SVN link found at the bottom of the page under the section
FOR DEVELOPERS

Step 4. Go to the folder where you want the source codes to be downloaded and Right Click
anywhere on the screen and select SVN Checkout

Step 5. In the checkout window, enter the following URL under the URL of Repository field.
Choose the checkout depth Fully Recursive.
https://svn.ecdf.ed.ac.uk/repo/see/OpenSeesEd/OpenSees/

Praveen Kamath & Liming Jiang Page 15

https://www.wiki.ed.ac.uk/display/opensees/UoE+OpenSees
https://svn.ecdf.ed.ac.uk/repo/see/OpenSeesEd/OpenSees/

OpenSees Developers Group IM Ver. 2

Step 6. Wait until the source code downloads and the checkout action shows Completed!

Praveen Kamath & Liming Jiang Page 16

OpenSees Developers Group IM Ver. 2

Note:
*Choose your own checkout directory
*You may checkout a particular revision by entering its number under Revision

Praveen Kamath & Liming Jiang Page 17

Section 9

WORKING WITH OPENSEES SOURCE
CODES

After downloading the source codes using the subversion as explained in section 7.2, open the
folder OpenSees2.4.0. It contains the following folders.

The two main folders of interest for OpenSees development are SRC and Win32. The SRC folder
contains the source scripts and the files in win32 control the source codes in SRC. The source files
(*.cpp) and the header files (*.h) for individual projects can be found in the sub folders of SRC.

Before Building the Solution, DO THESE

� Check the Configuration Manager
Click on Build in the menu bar and select the option ‘Configuration Manager’ to open it in a
separate window.
Ensure that the projects ‘OpenSeesTk’, ‘HTMain’ and ‘quickmain’ are unchecked. If one of
these is checked, you may encounter errors.

� Set Enable Incremental Linking to ’NO’
Right click on the project (startup project: eg., OpenSees) −→ Configuration properties −→

18

OpenSees Developers Group IM Ver. 2

Linker −→ General −→ Enable Incremental Linking −→ “NO (/INCREMENTAL:NO)”

� Set OpenSees as startup project (if not already set)
Right click on the project OpenSees in the solution explorer and select the option ‘Set as
StartUp Project’. OpenSees now turns bold, which indicates that it has been set as a startup
project.

Following steps show the instruction for compiling OpenSees.

Step 1. Open the folder containing the OpenSees project solution file
OpenSees2.4.0/Win32/openSees.sln

Step 2. Double click / run the file opensees.sln to open the project.
Note: For VS versions higher than 2008, the project files needs to be converted into new
format. Follow the onscreen instructions and wait until the project files load and appear in
the solutions explorer. This may take a few minutes. Also, choose to create a backup of the
old solution when prompted. Also, if you see a class view instead of solution explorer, check
FAQ

Step 3. Wait until the project loads and Ready appears on the bottom left of the screen. All the
projects appear in the solution explorer to the left of the VS screen.
Note: Check if the main project OpenSees is boldfaced. If not, right click on the project and
select the option Set as StartUp Project.
Also, check if the list contains the project SIFBuilder.

Step 4. To run the solution or to compile, click on the menu bar,
Build −→ Build Solution, or simply press F7

Praveen Kamath & Liming Jiang Page 19

OpenSees Developers Group IM Ver. 2

Wait until the solution is built. This process may take several minutes. A successful build
will output the following.

Step 5. To Debug, click on the menu bar,
Debug −→ Start Debugging, or simply press F5
Wait until OpenSees command window opens.

Praveen Kamath & Liming Jiang Page 20

Section 10

COMMON ERRORS IN MS VISUAL
STUDIO AND THEIR SOLUTION

This document illustrates working instructions for debugging the errors encountered in compiling
the open-source framework, Open System for Earthquake Engineering Simulations, OpenSees
using Microsoft Visual Studio IDE. The document is written to guide the beginners working on
development of OpenSees.

COMMON ERRORS AND THEIR SOLUTIONS

Error # C1083
Cannot find twoNodeLink.h

Reason:
Some times the library linkages will be missed out when Visual Studio loads a project. The link
needs to be re-established to successfully run the solution

Solution:
Right click on the class “actor” −→ Properties −→ C/C++ −→ Additional Include Directories
−→ < Edit > −→ add the path of the folder containing the missing file ..\..\..\src\

element\twoNodeLink

Trick: Search for the missing file in the directory to find its path/location

Error # LNK2019
unresolved external symbol

Actual error line:
material.lib(TclModelBuilderUniaxialMaterialCommand.obj) : error LNK2019: unresolved external
symbol “void * cdecl OPS DoddRestr(void)”(?OPS DoddRestr@@YAPAXXZ) referenced in
function “int cdecl TclModelBuilderUniaxialMaterialCommand(void *,struct Tcl Interp *,int,char
const * *,class Domain *)”
(?TclModelBuilderUniaxialMaterialCommand@@YAHPAXPAUTcl Interp@@HPAPBDPAV

21

OpenSees Developers Group IM Ver. 2

Domain@@@Z)
Reason:
OpenSees is an open source framework where developers from all over contribute. Sometimes,
the program they have written, although it works, may encounter issues when run on platforms on
which they were built. For example, if the programs were built on unix platform, they might have
linker issues when run using Microsoft Visual Studio. The easiest solution would be to comment
out those lines of codes and make rest of the codes run properly. This is the best solution ONLY
when the part of the codes causing error are UNIMPORTANT for your applications.
Solution:
Search for the .cpp file corresponding to the object file which is referenced in the error message.
For example, TclModelBuilderUniaxialMaterialCommand.cpp and comment out the following
lines pertaining to the error:
//extern void *OPS Dodd Restrepo(void);
/* } else if ((strcmp(argv[1],“Dodd Restrepo”) == 0) ||

(strcmp(argv[1],“DoddRestrepo”) == 0) ||
(strcmp(argv[1],“Restrepo”) == 0)) {
void *theMat = OPS Dodd Restrepo();
if (theMat != 0)
theMaterial = (UniaxialMaterial *)theMat;
else

return TCL ERROR;*/

Error # C1083 (with c1xx)

Actual error line:
c1xx : fatal error C1083: Cannot open source file: ‘..\..\..\SRC\element\bearing\
ElastomericX.cpp’: No such file or directory
c1xx : fatal error C1083: Cannot open source file: ‘..\..\..\SRC\element\bearing\
HDR.cpp’: No such file or directory
c1xx : fatal error C1083: Cannot open source file: ‘..\..\..\SRC\element\bearing\
LeadRubberX.cpp’: No such file or directory
Reason:
Some times the library linkages will be missed out when Visual Studio loads a project. The link
needs to be re-established to successfully run the solution.
Solution:
Step 1: (if it doesn’t already exist)
Right click on the class “element” −→ Properties −→ Additional Include Directories −→ <

Edit > −→ add the path of the folder containing the missing file ..\..\..\src\element\
elastomericBearing

Step 2: (if it exists)
Right click on the class “element” −→ Properties −→ Additional Include Directories −→ <

Edit >−→ delete the path of the folder containing the missing file ..\..\..\src\element\

Praveen Kamath & Liming Jiang Page 22

OpenSees Developers Group IM Ver. 2

bearing if already done, skip steps 1 & 2
Step 3:
Manually delete these lines in the file element.vcxproj located in OpenSees/Win32/proj/

element

<ClInclude Include=“..\..\..\SRC\element\bearing\ElastomericX.h” />
<ClInclude Include=“..\..\..\SRC\element\bearing\HDR.h” />
<ClInclude Include=“..\..\..\SRC\element\bearing\LeadRubberX.h” />

Manually delete these lines in the file element.vcxproj.filters located in OpenSees/Win32/

proj/element

<ClInclude Include=“..\..\..\SRC\element\bearing\ElastomericX.h”>
<Filter>bearing</Filter>

</ClInclude>
<ClInclude Include=“..\..\..\SRC\element\bearing\HDR.h”>
<Filter>bearing</Filter>

</ClInclude>
<ClInclude Include=“..\..\..\SRC\element\bearing\LeadRubberX.h”>
<Filter>bearing</Filter>

</ClInclude>
Note: Save and close the solution file (*.sln) before modifying the *.vcxproj and *.vcxproj.filters

Error # LNK1181
LINK : fatal error LNK1181: cannot open input file ’cssparse.lib’ Reason:

Missing library file
Solution:
Rebuild the project:
Right click over the class (Example: cssparse) in the solution explorer −→ Project Only −→
Rebuild only cssparse.
Note: This may trigger same error from other projects. Keep rebuilding the projects individually
until the error vanishes.

Error # LNK1123
Actual error line:

LINK : fatal error LNK 1123: failure during conversion to COFF: file invalid or corrupt
Solution:
Right click on the project (startup project: eg., OpenSees)−→Configuration properties−→ Linker
−→ General −→ Enable Incremental Linking −→ “NO (/INCREMENTAL:NO)”

Error # C2065
error C2065: ‘MAT TAG ElasticmtaerialNewThermal’ : undeclared identifier Reason:

Praveen Kamath & Liming Jiang Page 23

OpenSees Developers Group IM Ver. 2

No identifier or Tag defined. Whenever a new material is created, it should be assigned a unique
identifier or tag. If not defined, or if wrongly defined, it gives an error.
Solution:

Add a material tag in the source file classTags.cpp by adding the following line.
#define MAT TAG ElasticMaterialNewThermal 111
Here, 111 is the developer defined material tag. This number should be unique and different from
any other material tags to avoid duplication.

Error # LNK2019 followed by LNK1120
unresolved external symbol

Actual error line:
error LNK2019: unresolved external symbol “public: thiscall ElasticBeam2dBuck::ElasticBeam
2dBuck(int,double,double,double,int,int,class CrdTransf &,double,double,double)” (??0ElasticBeam
2dBuck@@QAE@HNNNHHAAVCrdTransf@@NNN@Z) referenced in function “int cdecl Tcl
ModelBuilder addElasticBeam(void *,struct Tcl Interp *,int,char const * *,class Domain *,class
TclModelBuilder *,int)” (?TclModelBuilder addElasticBeam
@@YAHPAXPAUTcl Interp@@HPAPBDPAVDomain@@PAVTclModelBuilder@@H@Z) xx>.\
..\..\bin/openSees.exe : fatal error LNK1120: 1 unresolved externals
Reason:
This error occurs when the program is unable to find the source and header files. Some times the
version of OpenSees solution checked out from SVN does not automatically include the source
and header files which were newly added to the solution. These files have to be checked manually
and added to the appropriate project in the solution explorer.
Solution:

The error message always shows the class in which the error has occurred. In this example, it is
ElasticBeam2dBuck. Search for the missing header and source files. ElasticBeam2dBuck.cpp and
ElasticBeam2dBuck.h files are found in OpenSees\SRC\element\elasticBeamColumn\.
Find the filter elasticBeamColumn under element. Right click on the filter −→ Add −→ Existing
Item −→ select the source and header file −→ click Add.
Rebuild the project and debug, if successful.

POST - DEBUGGING

If the build is successful, check if the project SIFBuilder is recognized by the framework. Follow
the steps given below.
Step 1: Click on the menu bar,
Debug −→ Start Debugging, or simply press F5.
Alternately, you may also press the debig button the debug button (solid green arrowhead pointing
right) on the on the toolbar. Step 2: On successful completion, an OpenSees Command Window

Praveen Kamath & Liming Jiang Page 24

OpenSees Developers Group IM Ver. 2

should pop out.
Step 3: Type the command source test.tcl at the command prompt in the opensees command
window.
OpenSees > source test.tcl
If a project is recognized successfully,

you will see this message.

General Instructions
When running the solutions, even after applying solutions to an error, if the solution fails, try

these combinations:

Attempt 1: Build −→ Solution
if this fails,

Attempt 2: Build −→ Rebuild Solution
if this too fails,

Attempt 3: Build −→ Clean Solution; Build −→ Build Solution

Praveen Kamath & Liming Jiang Page 25

Section 11

ADDING YOUR OWN CODE TO
OPENSEES

Externally written codes (C / C++ / Fortran) can be added to OpenSees interpreters using dynamic
link libraries (*.dll) on windows machine. Most commonly added components are:
New Material
New Element
New Solver
New Integrator
New Solution Algorithm
New Recorder

11.1 Generating a dynamic link library (*.dll) using Microsoft Visual Studio

In this section, we will go through the creation of a dll file for a new material (ElasticPPcpp)
written using C++.
The source (ElasticPPcpp.cpp) and header (ElasticPPcpp.h) files for the new element considered
in this example are found in:
OpenSees\DEVELOPER\material\cpp

Note: This section does not require to have the OpenSees project open. DLL files can be generated
separately and then imported into the project.

Step 1: Open Microsoft Visual Studio

Step 2: File −→ New −→ Project
Choose win32 project Visual C++ and Type a name which is the same as the name of the
class / source / header file. eg., ElasticPPcpp, choose a known location by clicking Browse...
and click Ok to open Win32 Application Wizard.
Click on Application Settings and check the following options and click Finish:
Application type: DLL
Additional options: Empty project

26

OpenSees Developers Group IM Ver. 2

New Project Window

New Project Window

Win32 Application Wizard Window

Step 3: Right click on the Source File−→Add−→Existing Item−→ Select ElasticPPcpp.h
and ElasticPPcpp.cpp −→ Add

Praveen Kamath & Liming Jiang Page 27

OpenSees Developers Group IM Ver. 2

Step 4: Build −→ Build Solution
1 Failed (Element API Not Found)
This step will fail because no core directory has been included.

Step 5: Right click on the project, ElasticPPcpp on the solution explorer −→ Properties −→
Configuration Properties−→C/C++−→General−→Additional Include Directories−→
choose < edit > from the dropdown −→ add the path of core directory, ..\..\..\core
or the actual path, OpenSees\DEVELOPER\core −→ Ok Note: Core directory is found
in OpenSees\DEVELOPER
If you try to build now, it fails again because it is still missing the supporting files from the
core directory.

Step 6: In the solution explorer, right click on Source File −→ Add −→ Existing Item −→
Developer −→ Core −→ select all (ctrl+A) −→ Add

Step 7: Build −→ Rebuild Solution
The program should now run successfully and create a DLL file in ElasticPPcpp\Debug
folder on your computer. Note:
You can also create the DLL for release version of the visual studio by choosing the Release
option on the toolbar and repeating steps, 5 and 7. For more information on debug and release
versions, see FAQ section.

Step 8: Copy the newly generated DLL file from ElasticPPcpp\Debug to OpenSees\
DEVELOPER\material\cpp. This is an IMPORTANT step.

Step 9: Test the new material using an example script example1.tcl located in OpenSees\

DEVELOPER\material\cpp.
• Copy the binary file, OpenSees.exe, to the folder OpenSees\DEVELOPER\material\
cpp.
• Double click on the command file to open the OpenSees Command Window.
• Run the example file by giving the command:
OpenSees > source example1.tcl.
If successful, the program should exit with a 0.

Note:
• *.dll should be in the same directory as the script
• If you can link a digital link library using set Load Library Path, there is no need to have the
DLL file in the same directory as the code.

Praveen Kamath & Liming Jiang Page 28

OpenSees Developers Group IM Ver. 2

11.2 Alternate and simple method to add a new material (with example)

In the following steps, we will be going over an example to add a new thermal material to the
material library in OpenSees, ElasticMaterialNewThermal. The easiest way to go about this
exercise is to copy an existing file ElasticMaterialThermal and making a suitable modification.
This method holds good when you are creating a material, similar to the one that already exists.
Note that all materials have some classes and methods in common, which perhaps makes this
method an efficient way to add your own code.

1. Got to the appropriate folder that contains the source and the header files for the existing
material. For example, in this case ElasticMaterialThermal.cpp and ElasticMaterialThermal.h.
OpenSees/SRC/material/uniaxial

2. Make a copy of the header and source files in the same folder.

3. Name it ElasticMaterialNewThermal.cpp and ElasticMaterialNewThermal.h.

4. Add the two newly created files to the element project in the solution explorer:
In the solution explorer, expand material project and thereafter expand uniaxial to see a list of
uniaxial materials available in OpenSees. Right click on uniaxial−→Add−→ Existing Item.
Select the source and header files for the new material from OpenSees\SRC\material\

uniaxial and click Add.

5. Open both the source and header files in a text editor (Notepad ++ or Microsoft Visual Studio
editor) and make changes. In this example, we make things simple just by replacing the
keyword, ElasticMaterialThermal to ElasticMaterialNewThermal.
Note: MS Visual Studio’s find and replace window can be brought up by clicking ctrl+H on
the keyboard. It consists of two options Quick Find and Quick Replace.
Type ElasticMaterialThermal under Find what: and ElasticMaterialNewThermal under
Replace with:. The window also offers to find and replace ‘where?’ in Look in:. Always keep
the default Option ‘Current Document’ to avoid accidental changes or deletion in the other
part of the document.

6. Add a Tag to the newly created material: Open the header file classTags.h (OpenSees\
SRC). Add the following line to assign a classTag.
#define MAT TAG ElasticMaterialNewThermal 111
Tag is a number (For example, 111 in the current example). This has to be unique and should
not be repeated.

7. Add the material to the Visual Studio project file (*.vcxproj)
Add the following line in material.vcxproj file.
<ClInclude Include=
“..\..\..\SRC\material\uniaxial\ElasticMaterialNewThermal.h” />

Praveen Kamath & Liming Jiang Page 29

http://notepad-plus-plus.org/

OpenSees Developers Group IM Ver. 2

<ClCompile Include=
“..\..\..\SRC\material\uniaxial\ElasticMaterialNewThermal.cpp” />
Note: When you modify the material.vcxproj file outside MS Visual Studio window, a dilog
box appears with a warning message: This file has been modified outside of the source editor.
Do you want to reload it?. Proceed with the option Overwrite.

8. Add a function for the newly created material in TclModelBuilderUniaxialMaterialCommand.cpp.
It is found in OpenSees\src\material\uniaxial. The file is also found in the
solution explorer.
Open the file in the source editor by double clicking over it. Add the following line to
declaration:
extern void *OPS NewElasticMaterialNewThermal(void);
Add the following in the code:
} else if (strcmp(argv[1],”ElasticNewThermal”) == 0) {
void *theMat = OPS NewElasticMaterialNewThermal();
if (theMat != 0)
theMaterial = (UniaxialMaterial *)theMat;
else
return TCL ERROR;
//- - - - - -End of adding identity for ElasticMaterialNewThermal

9. Rebuild only the material project: Right click on material −→ Project Only −→ Rebuild
Only material.

11.3 Testing the Newly Added Material (or a piece of code)

Step 1: Add a tcl file test.tcl to the in the project openSees. Add a line or two using the new
material. For example:
model BasicBuilder -ndm 2 -ndf 3;
uniaxialMaterial ElasticNewThermal 1 20000 0.01;
Step 2: Debug the successfully built version of OpenSees with the new material to bring up the
OpenSees command window.
Step 3: Source the test.tcl file by typing source test.tcl. If the program outputs the desired lines (if
added) or exits with no errors, you have SUCCESSFULLY added a new material.

Praveen Kamath & Liming Jiang Page 30

Section 12

WORKING WITH ‘quickMain’

The class ‘quickMain‘ is generally used to write source script for benchmark problems and test
the reliability of the written code. The only other way which has superceded this is by adding tcl
commands and writing tcl scripts for solving benchmark problems. The latter has gained popularity
lately. However, early developers find the ‘quickMain’ method very convenient.1

OpenSees Command Language Manual shows some basic structural element examples to demonstrate
the successful functioning of OpenSees framework. This section illustrates a simple linear elastic
3-bar truss structure subjected to static loads as shown in the pictures below.
Example:

The example demonstrates a typical finite element exercise by representing a truss configuration
using nodes, elements, materials, loads and constraints.
Model:

The model consists of an assembly of three truss elements defined by four nodes, a single load
pattern with a nodal load acting on node 4, where the three members join. The truss is maintained
in equilibrium by defining constraints at three bottom nodes. All three truss elements are assumed
to be made of same elastic material, which is defined by creating a single elastic material object.
Analysis

The model considered in the example is linear and is solved using Linear Solution algorithm. A
1When checking out and running opensees, always EXCLUDE the quickMain.

31

http://opensees.berkeley.edu/OpenSees/manuals/ExamplesManual/HTML/

OpenSees Developers Group IM Ver. 2

Load Control integrator is used as a procedure for applying load. The equations are formed using
a banded system, BandSPD (banded symmetric positive definite). The equations are numbered
using the RCM (Reverse Cuthill-McKee) numberer object. The constraints are represented with a
Plain constraint handler.

Step 1: Follow all the steps under the previous sections to download, build and debug OpenSees
source codes.

Step 2: Set quickMain as the Start Up project: right click on quickMain and choose ‘Set as
StartUp Project’.The code for testing should be written in main.cpp file under quickMain.

Step 3: Right click on the quickMain class and select the option ‘Project Only’ and then select
‘Rebuild Only quickMain’ or simply click F5.

Step 4: Once the build completes, the output indicates of the build is successful or not.

Step 5: In case of successful build, click Ctrl+F5 to open the output window.

Praveen Kamath & Liming Jiang Page 32

Section 13

ADDING A NEW CODE TO OPENSEES
(The quickMain Method)

13.1 Basic Steps

1. Provide a new subclass of Element class.
2. Provide an interface function that will be used to

parse the input and create a new element.

13.2 Inheritance diagram of an element class:

33

OpenSees Developers Group IM Ver. 2

13.2.1 The Element Class:

class Element : public DomainComponent {
public:

Element(int tag, int classTag);
virtual ∼Element();

// initialization
virtual int setDomain(Domain *theDomain);

//methods dealing with nodes and number of external dof
virtual int getNumExternalNodes(void) const =0;
virtual const ID &getExternalNodea(void) =0;
virtual Node **getNodePtrs(void) =0;
virtual int getNumDOF(void) =0;

//methods dealing with committed state and update
virtual int commitState(void); // called when a converged solution has been obtained for a time

step
virtual int revertToLastCommit(void) = 0; // called when the solution algorithm has failed to

converge to a solution to a solution at a time step
virtual int revertToStart(void); // called when model is rest to initial conditions
virtual int update(void); // called when a new trial step has been set at the nodes

//methods dealing with element stiffness
virtual const Matrix &getTangetStiff(void) =0;
virtual const Matrix &getInitialStiff(void) =0;

//methods dealing with element forces
virtual void zeroLoad(void);
virtual int addLoad(ElementLoad *theLoad, double loadFactor);
virtual const Vector &getResistingForce(void) =0;

//public methods for output
void Print(OPS Stream &s, int flag =0);
virtual Response *serResponse(const char **argv, int argc, OPS Stream &theHandler);
virtual int getResponse(int responseID, Information &eleInformation);

//method for database/parallel processing
int sendSelf(int commitTag, Channel &theChannel);
int recvSelf(int commitTag, Channel &theChannel, FEM ObjectBroker &theBroker);

Praveen Kamath & Liming Jiang Page 34

OpenSees Developers Group IM Ver. 2

}

13.3 Example - Truss2D

In the following section we will provide all necessary code to add a new 2D planar truss element
into an OpenSees interpreter. The stress-strain relationship will be provided by a UniaxialMaterial
object.

13.3.1 Header

The header for the new class, which we will call Truss2D is as follows:

//include directives
#include<Element.h>
#include<Matrix.h>
#include<Vector.h>

//forward declarations
class UniaxialMaterial;

class Truss2D : public Element
〈 public:

//constructors
Truss2D(int tag,

int Nd1, int Nd2,
UniaxialMaterial &theMaterial,
double A);

Truss2D();

//destructor
∼Truss2D();

//initialization
int setDomain(Domain *theDomain);

//public methods to obtain information about dof & connectivity
int getNumExternalNodes(void) const;
const ID &getExternalNodes(void);

Praveen Kamath & Liming Jiang Page 35

OpenSees Developers Group IM Ver. 2

Node **getNodePtrs(void);
int getNumDOF(void);

//public methods to set the state of the element
int commitState(void);
int revertToLastCommit(void);
int revertToStart(void);
int update(void);

//public methods to obtain stiffness
const Matrix &getTangetStiff(void) =0;
const Matrix &getInitialStiff(void) =0;

//public methods to obtain resisting force
const Vector &getResistingForce(void) =0;

//method for obtaining information specific to an element
void Print(OPS Stream &s, int flag =0);
Response *setResponse(const char **argv, int argc, OPS Stream &s);
int getResponse(int responseID, information and &eleInformation);

//public methods for database and parallel processing

int sendSelf(int commitTag, Channel &theChannel, FEM ObjectBroker &theBroker);
void Print(OPS Stream &s, int flag =0);

protected:

private:
//private member functions - only available to objects of the class
double computeCurrentStrain(void) const;

//private attributes - a copy for each object of the class
UniaxialMaterial *theMaterial; //pointer to the material
ID externalNodes; //contains the IDs of end nodes
Matrix trans; //hold the transformation matrix
double L; //length of truss (undeformed configuration)
double A; //area of truss
Node *theNodes[2]; //node pointers

//static data - single copy for all objects of the class
static Matrix trussK; //class wide matrix for returning stiffness

Praveen Kamath & Liming Jiang Page 36

OpenSees Developers Group IM Ver. 2

static Vector trussR; //class wide vector for returning residual
}; #endif

The header file defines the interface and variables for the class Truss2D. It defines the new class
to be a subclass of the Element class. The public interface consists of two constructors and a
destructor in addition to minimal set of methods we showed for the Element class. There are no
protected data or methods as we do not expect this class to contain further subclasses. In private
section, we define the private method, computeCurrentStrain(), and we define a number of private
variables and a number of static variables.
The header has a number of #include directives, one is needed for the base class and every class
used as a variable in the list of data (except those that are used as pointers). For those classes
which only appear as pointers in the header file (Node, UniaxialMaterial), a forward declaration
is all that is needed(the include can also be used, but using the forward declaration simplifies the
dependencies and reduces the amount of code that has to be recompiled later if changes are made).

13.3.2 Implementation

In another file, Truss.cpp, we place the code that details what the constructors, destructor and
methods do. In addition to this, we provide an additional procedure OPS Truss2D().
Note: It has the same name as the class with an OPS prefix). We will go through each part of the
file.

13.3.3 Include Directives

The first part of the file contains the list of includes. It is necessary to have #include directive
for each class and API file that is used within the source file (.cpp) file and is not included in the
header file (*.h).

#include<elementAPI.h>
#include<G3Globals.h>
#include<Information.h>
#include<Domain.h>
#include<Node.h>
#include<Channel.h>
#include<Message.h>
#include<FEM ObjectBroker.h>
#include<UniaxialMaterial.h>
#include<Renderer.h>
#include<ElementResponse.h>

Praveen Kamath & Liming Jiang Page 37

OpenSees Developers Group IM Ver. 2

#include<math.h>
#include<stdlib.h>
#include<string.h>

13.3.4 Static Variables

Next step is to initialize static variables. For the given example, we ate using two static-variables
(objects shared by two Truss2D object that is created), one to return the tangent matrix and and the
other to return the resisting force.

//initialize the class wide variables
Matrix Truss2D::trussK(4,4);
Vector Truss2D::trussR(4);

13.3.5 Constructors

After the list of includes, we provide the two constructors. The constructors are rather simple.
They just initialize all the data variables defined in the header. Note that it is important to set all
the initial pointer values to 0.
The first constructor is the one most typically used. The arguments provide the elements tag, the
tags of the two end nodes, the elements area and a copy of the element’s material.

The codes in the constructor does the following:

1. The elements tag and a 0 ate passed to the Element constructor.

2. The material pointer theMaterial, is set to a copy of the material obtained from the material
that is passed in the arguments.

3. The externalNodes array is set to be an array of size 2 and its values are set to the nodal tags
of two nodes.

4. The theNodes array component are set to be 0.

It should be noted that the static variables dealing with length, tranformations and the nodes are
set to 0 in the constructors. They will be filled in when the setDomain() method is invoked on the
object.

Truss2D::Truss2D(int tag,

Praveen Kamath & Liming Jiang Page 38

OpenSees Developers Group IM Ver. 2

int Nd1, int Nd2,
UniaxialMaterial &theMat,
double a)

:Element(tag, 0),
externalNodes(2),
trans(1,4), L(0.0), A(a)
{

//get a copy of the material object for your own use
theMaterial = theMat.getCopy(); if(theMaterial == 0) {

opserr << “FATAL TrussCPP::TrussCPP() - out of memory, could not get a copy of the Material\n”;
exit(-1);
{

//fill in the ID containing external node info with node id’s
if(externalNodes.Size() != 2)

opserr << “FATAL TrussCPP::TrussCPP() - out of memory, could not create an ID of size 2
\n”;

exit(-1); }

externalNodes(0) = Nd1;
externalNodes(0) = Nd2;

theNodes[0] = 0;
theNodes[1] = 0;
}

The second constructor is called when parallel processing or the database feature of the OpenSees
application is used. Its purpose is to create blank Truss2D objects, that will be filled in when the
recvSelf() method is invoked on the object.
Truss2D::Truss2D()
:Element(0,0),
theMaterial(0),
externalNodes(2),
trans(1,4), K(0.0), A(0,0)
{

theNodes[0] = 0;
theNodes[1] = 0;

}

Praveen Kamath & Liming Jiang Page 39

OpenSees Developers Group IM Ver. 2

13.3.6 Destructor

Then we provide the destructor. In the destructor, all memory that the Truss2D created or was
passed to it in the constructor must be destroyed. For our example, we need to invoke the destructor
on the copy of the material object.

Truss2D::∼Truss2D()
{

if (theMaterial != 0)
delete theMaterial;

}

setDomain() initialization method

The setDomain() method is invoked when the truss element is being added to the domain. It
is in this method that most of private variables of the project are determined. The method returns
0 if successful or a negative number if NOT. In the method, we obtain pointers to the end nodes,
nodal coordinates are obtained and the element length and the transformation materix is set once
the coordinates have been obtained.
void
Truss2D::setDomain(Domain *theDOmain)
{

//check Domain is not null - invoked when object removed from a domain
if(theDomain == 0), {

return;
}

//first ensure the nodes exist in Domain and set the node pointers
Node *end1Ptr,*end2Ptr;
int Nd1 = externalNodes(0);
int Nd2 = externalNodes(1);
end1Ptr = theDomain− >getNode(Nd1);
end2Ptr = theDomain− >getNode(Nd2);
if end1Ptr == 0 {

opserr << “WARNING Truss2D::setDomain() - at truss” <<this− >getTag()<<“node”
<< Nd1 << does not exist in domain\n”;

Nd1 << “ does not exist in domain \n”;
return;

don’t go any further - otherwise segmentation fault occurs
}

if end2Ptr == 0 {
opserr << “WARNING Truss2D::setDomain() - at truss” <<this− >getTag()<<“node”

Praveen Kamath & Liming Jiang Page 40

OpenSees Developers Group IM Ver. 2

<< Nd2 << does not exist in domain\n”;
Nd2 << “ does not exist in domain \n”;
return;

don’t go any further - otherwise segmentation fault occurs
}
theNodes[0] = end1Ptr;
theNodes[1] = end2Ptr;
//call the domain component class method THIS IS VERY IMPORTANT!!!
this− >DomainComponent::setDomain(theDomain);

ensure connected nodes have correct number of dof’s
int dofNd1 = end1Ptr− >getNumberDOF();
int dofNd2 = end2Ptr− >getNumberDOF();
if ((dofNd1 != 2) ‖‖ (dofNd2 != 2)) lbrace

opserr << “Truss2D::setDomain(): 2 dof required at nodes\n”;
return;
}

//now determine the length and transformation matrix
const Vector &end1Crd = end1Ptr− >getCrds();
const Vector &end2Crd = end2Ptr− >getCrds();

double dx = end2Crd(0)-end1Crd(0);
double dy = end2Crd(1)-end1Crd(1);

L = sqrt(dx*dx + dy*dy);

if (L ==0) {
opserr << “WARNING Truss2D::setDomain() - Truss2D” <<this− >getTag() << “has

zero length\n”;
return;

//don’t go any further - otherwise divide by 0 error occurs
}

double cs = dx/L;
double sn = dy/L;

trans(0,0) = -cs;
trans(0,1) = -sn;
trans(0,2) = cs;
trans(0,3) = sn;

rbrace

Praveen Kamath & Liming Jiang Page 41

OpenSees Developers Group IM Ver. 2

13.3.7 Methods dealing with nodes

Next comes four rather simple methods that return basic information about the element nodes.
These are one line methods that does not need any explanation.

int
Truss2D::getNumExternalNodes(void)const
{

return 2;
}

constID &

Truss2D::getExternalNodes(void)
{

return externalNodes;
}

Node**
Truss2D::getNodePtrs(void)
{

return theNodes;
}

int
Truss2D::getNodePtrs(void)
{

return 4;
}

13.3.8 Methods dealing with current state

int
Truss2D::commitState()
lbrace

return theMaterial− >commitState();
}

int

Praveen Kamath & Liming Jiang Page 42

OpenSees Developers Group IM Ver. 2

Truss2D::revertToLastCommit()
lbrace

return theMaterial− >revertToLastCommit();
}

int
Truss2D::revertToStart()
lbrace

return theMaterial− >revertToStart();
}

int
Truss2D::update()
lbrace

textbf//determine the current strain given trial displacement at the nodes
double strain = this− >computeCurrentStrain();

//set the strain in the materials
theMaterial− >setTrialStrain(strain)

return 0;
{

13.3.9 Methods to return Tangent Matrix

In both methods we obtain appropriate tangent from the material and use this to return the transformed
matrix.
const Matrix &

Truss2D::getTangentStiff(void)
{

if (L == 0.0)lbrace //length = zero - problem in setDomain() warning message already printed
trussK.Zero();
return trussK;

}

//get the current E from the material for the last updated strain
double E = theMaterial− >getTangent();

//form the tangent stiffness matrix
trussK = trans∧trans;

Praveen Kamath & Liming Jiang Page 43

OpenSees Developers Group IM Ver. 2

trussK *= A*E/L;

//return the matrix
return trussK;

}

const Matrix &

Truss2D::getInitialStiff(void)
{

if (L == 0.0)lbrace //length = zero - problem in setDomain() warning message already printed
trussK.Zero();
return trussK;

}

//get the current E from the material for the last updated strain
double E = theMaterial− >getInitialTangent();

//form the tangent stiffness matrix
trussK = trans∧trans;
trussK *= A*E/L;

//return the matrix
return trussK;

}

13.3.10 Methods to return resisting force

In this method, we obtain the stress from the material and use this to return the transformed force
vector.
const Vector &
Truss2D::getResistingForce()
{ if(L == 0.0) { //length == 0, problem in setDomain()

trussR.Zero();
return trussR; }

//want: R = Ku - Pext

//force = F * transformation
double force = A*theMaterial− >getStress();
for (int i=0;i¡4;i++)

Praveen Kamath & Liming Jiang Page 44

OpenSees Developers Group IM Ver. 2

trussR(i) = trans(0,i)*force;

return trussR;
}

13.3.11 Methods dealing with output

Information is obtained by the user when the print command is invoked by the user and also when
the user issues the recorder command. When the Print command is invoked, Print method is also
invoked. This method simply prints information about the element, and then asks the material to
do likewise.
void
Truss2D::Print(OPS Stream &s, int flag)
{

s << “Element: ” <<this− >getTag();
s << “type: Truss2D iNode: ” << externalNodes(0);
s << “jNode ” << externalNodes(1);
s << “Area: ” << A;
s << “\t Material” << *theMaterial;

}
There are two methods used by the element recorders.

1. The first method, setResponse(), is called then the recorder is created. The element informs
the recorder that it can respond to a request of that type, if it cannot respond to the request,
it returns a 0, otherwise it returns a response object. The response includes a pointer to the
element, an integer flag used to ID the response when the getResponse() method is called,
and a Vector detailing the size of the response.

2. The second method, getResponse(), is called by the recorder when it is actually recording the
information.

Response *
Truss2D::setResponse(const char **argv, int argc, OPS Stream &output)
{

Response *theResponse = 0;

output.tag(“ElementOutput”);
output.attr(“eleType”,this− >getClassType());
output.tag(“ElementOutput− >”);

Praveen Kamath & Liming Jiang Page 45

OpenSees Developers Group IM Ver. 2

int numNodes = this− >getNumExternalNodes();
const ID &nodes = this− >getNumExternalNodes();
static char nodeData[32];

for(int i=0;i¡numNodes;i++) {
sprintf(nodeData, “node%d”,i+1);
output.attr(nodeData,nodes(i));

}

if(strcmp(argv[0],“force”) == 0 ‖ strcmp(argv[0],“forces”) == 0 ‖
(strcmp(argv[0],“globalForce”) == 0 ‖ (argv[0],“globalForces”) == 0) {

const Vector &force = this− >getResistingForce();
int size = force.Size();
for(int i=0;i¡size;i++) {

sprintf(nodeData,“P%d”,i+1);
output.tag(“ResponseType”,nodeData);

}

theResponse = new ElementResponse(this, 1, this− >getResistingForce());
}

else if((strcmp(argv[0],“dampingForce”) == 0 ‖ strcmp(argv[0],“forces”) == 0)
{

const Vector &force = this− >getResistingForce();
int size = force.Size();
for(int i=0;i¡size;i++) {

sprintf(nodeData,“P%d”,i+1);
output.tag(“ResponseType”,nodeData);

}
theResponse = new ElementResponse(this, 2, this− >getResistingForce());
} else if (strcmp(argv[0],“axialForce”) == 0)

return new ElementResponse(this, 3, 0.0);

output.endTag(); return theResponse;
}

int
Truss2D::getResponse(int responseID, Informatuon &eleInfo)
{

double strain;

switch(responseID) {

Praveen Kamath & Liming Jiang Page 46

OpenSees Developers Group IM Ver. 2

case -1;
return -1;

case 1: //global forces
return eleinfo.setVector(this− >getResistingForce());

case 2:
return eleinfo.setVector(this− >getRaleighDampingForces());

case 3:
return eleinfo.setDouble(A*Material− >getStress());

default:
return 0;

}
}

13.3.12 Methods dealing with databases and parallel processing

Two methods, one each for database and parallel processing have been provided, if the user
specifies database or parallel processing feature in OpenSees. If neither is to be used, OpenSees
returns a negative value in both the methods. The idea is that, the elements ’packs’ its information
using Vector and ID objects, which is further sent to a Channel Object. On the other hand, the
blank element will receive the Vector and ID data, ’unpack’s it and assigns the variables.

int
Truss2D::sendSelf(int commitTag, Channel &theChannel)
{

int res;

//we don’t check if dataTag == 0 for the Element
//objects as that is taken care of in a commit by the domain
//object. Therefore, checking need not be done while sending the data
int dataTag = this− >getDbTag();

//Truss2D packs its data into a Vector and sends this to theChannel
along with the DbTag and the commit tag passed in the arguments

Vector data(5);
data(0) = this− >getTag();
data(0) = A;
data(2) = theMaterial− >getClassTag();
int matDbTag = theMaterial− >matDbTag();

Praveen Kamath & Liming Jiang Page 47

OpenSees Developers Group IM Ver. 2

NOTE: We do have to ensure that the material has a database
tag if we are sending to a database channel.
if (matDbTag == 0) {

matDbTag = theChannel.getDbTag();
if (matDbTag != 0) {

theMaterial− >setDbTag(matDbTag);
}
data(3) = matDbTag;

res = theChannel.sendVector(dataTag, commitTag, data);
if(res<0) {

opserr << “WARNING Truss2D::sendSelf() - failed to send Vector\n”;
return -1;
}

//Truss2D then sends the tags of its two end nodes
res = theChannel.sendVector(dataTag, commitTag, externalNodes);
if(res<0) {

opserr << “WARNING Truss2D::sendSelf() - failed to send ID\n”;
return -2;
}

//finally Truss2D invokes its material object to show up
res = theMaterial.sendSelf(commitTag, theChannel);
if(res<0) {

opserr << “WARNING Truss2D::sendSelf() - failed to send the Material\n”;
return -3;
}

return 0;
{

int
Truss2D::recvSelf(int commitTag, Channel &theChannel, FEM ObjectBroker &theBroker)
{

int res;
int dataTag = this− >getDbTag();

//Truss2D creates a Vector, receives a Vector and then sets the
internal data with the data in the Vector

Praveen Kamath & Liming Jiang Page 48

OpenSees Developers Group IM Ver. 2

Vector data(5);
res = theChannel.recvVector(dataTag, commitTag, data);
if(res<0) {

opserr << “WARNING Truss2D::recvSelf() - failed to receive Vector\n”;
return -1;
}

this− >setTag((int)data(0));
A = data(1);
//Truss2D now receives the tags of its two external nodes
res = theChannel.recvVector(dataTag, commitTag, externalNodes);
if(res<0) {

opserr << “WARNING Truss2D::sendSelf() - failed to send ID\n”;
return -2;
}

//we create a material object of the correct type,
//sets its database tag and commands this new object to show up,
int matClass = data(2);
int matDb = data(3);

theMaterial = theBroker.getNewUniaxialMaterial(matClass);
if(theMaterial == 0); {

opserr << “WARNING Truss2D::recvSelf() - failed to create a Material\n”;
return -3;
}

//we set the dbTag before we receive the material - this is important
theMaterial− >setDbTag(matDb);
res = theMaterial− >recvSelf(commitTag, theChannel, theBroker);
if (res<0) {

opserr << “WARNING Truss2D::recvSelf() - failed to receive the Material\n”;
return -3;
}

Praveen Kamath & Liming Jiang Page 49

Section 14

ADDING A Tcl COMMAND TO
OPENSEES

For questions on this section, email Xu Dai at x.dai@ed.ac.uk or Liming Jiang at liming.jiang@ed.ac.uk

Tcl (originally from Tool Command Language, but conventionally spelled “Tcl” rather than
“TCL”; pronounced as “tickle” or “tee-see-ell”) is a scripting language created by John
Ousterhout. Originally “born out of frustration”, according to the author, with programmers
devising their own languages intended to be embedded into applications, Tcl gained acceptance
on its own. It is commonly used for rapid prototyping, scripted applications, GUIs and
testing. Tcl is used on embedded systems platforms, both in its full form and in several
other small-footprint versions.
Currently Tcl 8.5 is being used by OpenSees, and useful links include:
Tcl/Tk documentation: http://www.tcl.tk/doc/
Tcl commands list: http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
Tcl Tutorial: http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

14.1 Creating your own command

Enumerated below are typical command lines used to create Tcl commands in TclHeatTransferModule
class.

1. Use Tcl CreateCommand (This is the standard API of Tcl) to add a new command- FireModel:
Tcl CreateCommand(interp,“FireModel”,(Tcl CmdProc*)TclHeatTransferCommand add
FireModel,(ClientData)NULL, NULL);

2. Specify the Procedure corresponding to this keyword:
int TclHeatTransferCommand addFireModel(ClientData clientData, Tcl Interp *interp, int
argc, TCL Char **argv)(. . . ·)

50

mailto:x.dai@ed.ac.uk
mailto:liming.jiang@ed.ac.uk
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://www.tcl.tk/doc/
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

OpenSees Developers Group IM Ver. 2

3. TclModelBuilder or domain classes hold the tags and the pointers of materials, elements,
firemodels and so on, using ArrayOfTaggedObjects. Alternatively MapofTaggedObjects is
responsible to storing the pointers for auto-loop search and application.
theFireModels = new ArrayOfTaggedObjects(10);

4. “new” is C++ standard command for creating a pointer to the memory space where the
corresponding class is stored:
theFireModel = new LocalizedFireEC1(FireModelTag, crd1, crd2, crd3, D, Q, H, lineTag);

5. Adding and returning the object pointer:
theTclHTModule-¿addFireModel(theFireModel);
FireModel *theFireModel = theTclHTModule-¿getFireModel(FireModelID);

6. Get integer input from the interpreter, similarly Tcl GetDouble is for obtaining double type
value from the interpreter:
if (Tcl GetInt(interp, argv[2], &FireModelTag) != TCL OK) {. . . ·}

7. Checking the keyword of command:
else if(strcmp(argv[1],“parametric”) == 0 ‖ strcmp(argv[1],“Parametric”) == 0) {. . . ·}

8. Printing out warning or error:
opserr << “WARNING invalid thermal inertia of the compartment boundaries” << endln;

9. Argc: number of arguments from a line-input in the command line prompt, Argv[n]: the
(n+1)th argument (component in the input arrary)
i.e., Node 1 1 0; Argc=4, Argv[3]=0

14.2 Example for adding Tcl commands for fire models

//Add Fire Model
int
TclHeatTransferCommand addFireModel(ClientData clientData, Tcl Interp *interp, int argc, TCL Char
**argv)

// checking the TclHTModule exists or not
if (theTclHTModule == 0)
opserr << “WARNING current HeatTransfer Module has been destroyed - HTPattern\n”;
return TCL ERROR;
}
// checking the HTDomain exists or not
if (theHTDomain == 0)
opserr << “WARNING no active HeatTransfer Domain - HTPattern\n”;
return TCL ERROR;
}

Praveen Kamath & Liming Jiang Page 51

OpenSees Developers Group IM Ver. 2

//create a pointer to base class
FireModel* theFireModel=0;
int FireModelTag = 0;

//get the fireModel tag;
//Tcl GetInt is a Tcl standard function for getting the integer input from the interpreter, if it
successfully receives the integer, the function will return TCL OK, otherwise it will cause an error
and return TCL ERROR
if (Tcl GetInt(interp, argv[2], &FireModelTag) != TCL OK)
opserr << “WARNING:: invalid entity tag for defining HT constants: ” << argv[1] << “\n”;
return TCL ERROR;
}

int count=2;
//It is a common approach to use count recording the current location of argument.
Thus the count will add 1 after checking the argument.
// The standard format of TCL command will be like “ Firemodel standard 1 ” // or “Firemodel
localised 1 origin $locx $locy $locz firepars
//standard fire curve;
if(strcmp(argv[1],“-standard”) == 0 ‖ strcmp(argv[1],“standard”) == 0 ‖ strcmp(argv[1],“Standard”)
== 0){

theFireModel = new NorminalFireEC1(1 , 1);

}
//hydroCarbon fire curve;
else if(strcmp(argv[1],“hydroCarbon”) == 0 ‖

strcmp(argv[count],“HydroCarbon”) == 0){
theFireModel = new NorminalFireEC1(1 , 3); // hydrocarbon fire tag is 3;
}
//Paramtetric fire
else if(strcmp(argv[1],“parametric”) == 0 ‖ strcmp(argv[1],“Parametric”) == 0){

double thi=0; double avent=0; double hvent=0; double atotal=0; double afire=0; double
qfire=0; double Tlim=0;

count++;
if(argc==10){

if (Tcl GetDouble(interp, argv[count], &thi) != TCL OK) {
opserr << “WARNING invalid thermal inertia of the compartment boundaries” <<

endln;
opserr << “ for HeatTransfer fire model: ” << argv[1] << endln;
return TCL ERROR;
} count++;

Praveen Kamath & Liming Jiang Page 52

OpenSees Developers Group IM Ver. 2

if (Tcl GetDouble(interp, argv[count], &avent) != TCL OK) {
opserr << “WARNING invalid total area of vertial openings on walls” << endln;
opserr << “ for HeatTransfer fire model: ” << argv[1] << endln;
return TCL ERROR;
} count++;
if (Tcl GetDouble(interp, argv[count], &hvent) != TCL OK) {
opserr << “WARNING invalid weighted average of window heights on walls” << endln;
opserr << “ for HeatTransfer fire model: ” << argv[1] << endln;
return TCL ERROR;
} count++;
if(Tcl GetDouble(interp, argv[count], &atotal) != TCL OK) {
opserr << “WARNING invalid total area of the compartment(including walls)” <<

endln;
opserr << “ for HeatTransfer fire model: ” << argv[1] << endln;
return TCL ERROR;
} count++;
if (Tcl GetDouble(interp, argv[count], &afire) != TCL OK) {
opserr << “WARNING invalid area of the floor with fire” << endln;
opserr << “ for HeatTransfer fire model: ” << argv[1] << endln;
return TCL ERROR;
} count++;
if (Tcl GetDouble(interp, argv[count], &qfire) != TCL OK) {
opserr << “WARNING invalid total design fire” << endln;
opserr << “ for HeatTransfer fire model: ” << argv[1] << endln;
return TCL ERROR;
} count++;
if (Tcl GetDouble(interp, argv[count], &Tlim) != TCL OK) {
opserr << “WARNING invalid time levels corresponds to different fire growth rate” <<

endln;
opserr << “ for HeatTransfer fire model: ” << argv[1] << endln;
return TCL ERROR;
}

}
else

opserr<< “WARNING:: Defining Parametric fire: “<<argv[2]<<” recieved insufficient
arguments” << ”\n”;

theFireModel = new ParametricFireEC1(FireModelTag, thi, avent, hvent, atotal, afire, qfire,
Tlim);
}
//localised fire curve;
else if(strcmp(argv[1],“localised”) == 0 ‖

Praveen Kamath & Liming Jiang Page 53

OpenSees Developers Group IM Ver. 2

strcmp*argv[1],“Localised”) == 0){

count++; //count should be updated
double crd1=0.0; double crd2=0.0; double crd3=0.0;
double D=0; double Q=0; double H=0; int lineTag=0;

//Add a tag for location of origin;
if(strcmp(argv[count],“-origin”) == 0 ‖ strcmp(argv[count],“origin”) == 0){

count++;
if (Tcl GetDouble(interp, argv[count], &crd1) != TCL OK) {
opserr << “WARNING invalid x axis coordinate of fire origin” << endln;
opserr << “ for HeatTransfer localised fire model: ” << argv[count] << endln;
return TCL ERROR;
}
count++;
if (Tcl GetDouble(interp, argv[count], &crd2) != TCL OK) {
opserr << “WARNING invalid y axis coordinate of fire origin” << endln;
opserr << “ for HeatTransfer localised fire model: ” << argv[count] << endln;
return TCL ERROR;
}
count++;

if (Tcl GetDouble(interp, argv[count], &crd3) == TCL OK) {
//if the z loc is successfully recieved, count should be added with 1;
count++;
}
else
{

//it possible not to have a z loc for localised fire definition
opserr << “WARNING invalid z axis coordinate of fire origin” << endln;
opserr << “ for HeatTransfer localised fire model: ” << argv[count] << endln;
crd3=0.0;

}
}
//end of fire origin, waiting for firePars;
if(strcmp(argv[count],“-firePars”) == 0 ‖ strcmpargv[count],“firePars”) == 0){

count++;
if (Tcl GetDouble(interp, argv[count], &D) != TCL OK) {
opserr << “WARNING invalid diameter of the fire source” << endln;
opserr << “ for HeatTransfer localised fire model: ” << argv[count] << endln;
return TCL ERROR;

Praveen Kamath & Liming Jiang Page 54

OpenSees Developers Group IM Ver. 2

}
count++;
if (Tcl GetDouble(interp, argv[count], &Q) != TCL OK) {
opserr << “WARNING invalid rate of heat release” << endln;
opserr << “ for HeatTransfer localised fire model: ” << argv[count] << endln;
return TCL ERROR;
}
count++;
if (Tcl GetDouble(interp, argv[count], &H) != TCL OK) {
opserr << “WARNING invalid distance between the fire source and the ceiling” <<

endln;
opserr << “ for HeatTransfer localised fire model: ” << argv[count] << endln;
return TCL ERROR;
}
count++;
//detect argument for linetag;
if(argc-count>0){

if (Tcl GetInt(interp, argv[count], &lineTag) == TCL OK) {
opserr << “WARNING invalid central line tag ” << endln;
opserr << “ for HeatTransfer localised fire model: ” << argv[count] << endln;
return TCL ERROR;
}

}
else {

opserr << “Central line tag for localised fire “<< argv[1]<<”is set as default:3” <<

endln;
lineTag=3;

}
}
else {

opserr<< “WARNING:: Defining Localised fire ”<<argv[2]
<<“ expects tag:-firePars or firePars” << “\n”; }

theFireModel = new LocalizedFireEC1(FireModelTag, crd1, crd2, crd3, D, Q, H, lineTag);
}
//else ———-
else{

opserr<<“WARNING unknown fire model type”<< argv[1];
opserr<<“- for fire model ”<<FireModelTag;
opserr<<“ valid types: standard, hydroCarbon,parametric, localised.. \n”;
return TCL ERROR;
}

Praveen Kamath & Liming Jiang Page 55

OpenSees Developers Group IM Ver. 2

if(theFireModel!=0){ theTclHTModule->addFireModel(theFireModel); }
else
{

opserr<<“WARNING: TclHTModule fail to add FireModel: ”<<argv[1]<<endln;
}

return TCL OK;

}

Praveen Kamath & Liming Jiang Page 56

Section 15

RUNNING OPENSEES IN LINUX

15.1 General Linux Commands (useful while running OpenSees)

sudo - “super user do” or “substitute user do” allows user to run programs with the security
privileges of another user.

sudo -i - “super user do -i” or “substitute user do -i” allows user to access the root directory.
(most applications run without root. However, some programs demand the root access)

md - “make directory” command allows user to create a new directory / folder.

cd - “change directory” command allows user to change the directory. i.e., move from one
directory to another or simply navigate along a path.

pwd - “present working directory” allows user to view the current working directory.

ls - “list” command allows user to view the files and directories of the current folder.

ls -l - “list -l” command allows user to view the permission of files and directories of the current
folder.

ls -l ‘filename with extension’ - “list -l filename with extension” command allows user to view the
permission of files of the current folder.

ls -ld ‘foldername’ - “list -ld foldername” command allows user to view the permission of folder.

57

OpenSees Developers Group IM Ver. 2

15.1.1 Identity used for obtaining permissions or permission types

r - User has the permission to read the contents of the directory/file (using ls command). The
number equivalent of this permission is 4.

w - User has the permission to write into the directory/file (create files and directories using mkdir).
The number equivalent of this permission is 2.

x - User has the permission to enter the directory (change directory using cdcommand. The number
equivalent of this permission is 1.

15.1.2 Permission identity for user groups

u - Owner permission only
g - Group permission along with owner permission
a or o - Permission for all users

15.1.3 Permutation of numbers used to set permissions

0 no permission
1 execute
2 write
3 write and execute (2 + 1)

4 read
5 read and execute (4 + 1)

6 read and write (4 + 2)

7 read, write and execute (4 + 2 + 1)

chmod a+x - “change mode a+x” command allows user to set permission to execute a command
for all users and (a represents all users and x represents permission to execute).
chmod 777 - “change mode 777” command allows all users to read, write and execute a command.
cd .. - “change directory ..” command allows user to navigate to the previous directory in the path.
cd ˜ - “change directory ” command allows user to move back to the home directory.
clear - this command clears the screen in the working terminal.
echo $PATH - this command shows the library paths.
echo LD LIBRARY PATH=. - this command allows the user to set the library path to .
echo LD LIBRARY PATH=. - this command allows the user to set the library path to .
‘program name’ - -version - this command allows the user to check the current version of an
installed program. eg., gcc - -version.

Praveen Kamath & Liming Jiang Page 58

OpenSees Developers Group IM Ver. 2

15.2 Installing Necessary Packages to run OpenSees

Step 1.Open Terminal

Step 2.Download and install the subversion package key in the following command at the terminal
sudo apt-get install subversion

Step 3.Checkout OpenSees from the subversion (choose one of the two)
Berkeley Version

svn co svn://opensees.berkeley.edu/usr/local/svn/OpenSees/trunk@5363 OpenSees

Edinburgh Version

svn co https://svn.ecdf.ed.ac.uk/repo/see/OpenSeesEd/OpenSees/

Step 4: Create two directories (bin and lib) under the home directory

mkdir bin

mkdir lib

Step 5: Install the following packages
make
gcc
g++
gfortran
mysql-server
tcl8.5
tcl8.5-dev
tk8.5
tk8.5-dev
libelf-dev
libgl1-mesa-dev
libglu1-mesa-dev
libpng-dev
Run the following in the terminal

sudo apt-get install make gcc g++ gfortran mysql-server tcl8.5 tcl8.5-dev tk8.5 tk8.5-dev libelf-dev libgl1-mesa-dev

libglu1-mesa-dev libpng-dev

Step 6: Change the read permissions of the OpenSees directory

Praveen Kamath & Liming Jiang Page 59

OpenSees Developers Group IM Ver. 2

sudo chmod 777 OpenSees

Step 7: Key in the command to make the solution of OpenSees

sudo make

15.3 Adding Your Own Code to OpenSees

Software: GNU Compiler Collection (GCC)

Step 1. Open a new terminal (Ctrl + Alt+ T)

Step 2. Checkout the DEVELOPER folder by typing in the following command
svncosvn://opensees.berkeley.edu/usr/local/svn/OpenSees/trunk/DEVELOPER

Step 3. Type the command cd DEVELOPER

Step 4. Type the command cd material

Step 5. Type the command cd cpp

Step 6. Try to run the example by typing the following command
/home/‘username’/bin/OpenSees example1.tcl
Note:
* Run this from the path of the cpp folder
* Run OpenSees from where it exists on your computer
* replace ‘username’ by the username of your computer

The build fails with the following error:
WARNING could not create uniaxialMaterial ElasticPPcpp while executing
“uniaxialMaterial ElasticPPcpp 1 3000 0.001”
(file “example1.tcl” line 22)

Step 7. Type the command make or sudo make

Step 8. Repeat the command /home/’username’/bin/OpenSees example1.tcl

If the error persists,

Praveen Kamath & Liming Jiang Page 60

OpenSees Developers Group IM Ver. 2

Step 9. Type the command export LD_LIBRARY_PATH=.

Step 10. Repeat the command /home/‘username’/bin/OpenSees example1.tcl

Praveen Kamath & Liming Jiang Page 61

Section 16

FAQ

Q.Which version of Visual Studio should be used for compiling OpenSees?
A. Initial version of OpenSees framework is built on Visual Studio 2005. The best recommended
versions of Visual Studio to run OpenSees are MS Visual Studio 2008 and MS Visual Studio 2010.

Q.Which version of Tcl/Tk should be used for compiling OpenSees?
A. The current stable version of Tcl/Tk mentioned on the OpenSees website is Version 8.5.16.
OpenSees is compatible with 32 bit (x86) version of Tcl/Tk. Incompatibility is observed in 64 bit
version. We recommend using 32 bit version of Tcl/Tk.

Q.Where should the Tcl/Tk be installed?
A. Tcl/Tk should be installed in C:\ProgramFiles\Tcl. This folder does not exist and it has
to be created. If you choose the default, the program will be installed in C:\Tcl and it will not
be identified by OpenSees.

Q.Where do I find the Microsoft Visual Studio solution file (OpenSees.sln) for OpenSees?
A. The solution file (OpenSees.sln) is found in OpenSees\Win32.

Q.The solution file I have shows 8 / 9 / 10 on its icon. What does this mean?
A. The numbers found on the solution file icons represent the version of visual studio that they
have been built in.

Q.The solution file I have is built on a previous version of Visual Studio. What do I do?
A. Double click on the solution file (OpenSees.sln) to open it in microsoft visual studio. If Visual
Studio detects that the project or file was created in an earlier version of Visual Studio, the Visual
Studio Conversion Wizard opens. Follow the on-screen instructions to complete the wizard.
Creating a backup of the solution is Optional.

Q.I don’t see a Solution Explorer toolbar when I open the project using OpenSees.sln file. I see a
class view instead. Where is the Solution Explorer?
A. Sometimes, visual studio may display a class view by default. You may choose to view the

62

OpenSees Developers Group IM Ver. 2

solution explorer instead. Choose View from menu bar and select Solution Explorer to display it
on the left panel of Microsoft Visual Studio window.
Q.I don’t see a Build menu on my menu bar. What do I do?
A. This is because your visual studio is configured to Basic Settings by default. Enable expert
settings. From the menu bar, click on Tools −→ Settings −→ Expert Settings.

Q.I have built the solution successfully. What next?
A.Click on Debug option in the menu bar and select Start Debugging or click on the solid green
arrowhead (Start Debugging) found on the debugging toolbar or simply hit F5 on your keyboard
to debug and generate the binary file OpenSees.exe

Q.My debugging is successful and my opensees command window is now Open. But where do I
find the binary file OpenSees.exe?
A. OpenSees builds the binary file in OpenSees\Win32\bin folder.

Q.I tried running some example scripts using the binary file generated by MS Visual Studio after
debugging. It takes too long to run them. Why?
A. This is because your binary was generated using Debug version. Generate a release version by
selecting the Release option in the solution configurations dropdown menu. This option is found
on the debug toolbar.

Q.What is the difference between Debug and Release versions?
A. The main difference between the Debug version and the Release version is the debug configuration
generates debug information for your program and disables compiler optimizations while the
release configuration enables compiler optimizations. The debug binaries tend to be huge as they
carry debug information with them which is very useful if the program crashes. However, the
release binary is small and contains no crash information. If you want to save time, use the release
version of the binary as it is ideal for end users. If your program crashes and you want some clues
about it and you don’t care about the time it takes to run, use debug version.

Q.My program takes a very long time to run. Is there a way I can save time?
A. The speed of the build is directly proportional to the hardware and memory of your computer. It
may take very long time to run if you have a slow processor and low RAM. OpenSees framework
consists of many projects as seen in the solution explorer when you open the OpenSees.sln in MS
Visual Studio. To save the time while building the solution or debugging, you may run only the
project of your interest, or the project in which the error occurred and was solved. To run a single
project, Right Click on the <Project Name> −→ Project Only −→ Build Only <Project Name>.
For example: Right click on SIFBuilder −→ Project Only −→ Build Only SIFBuilder
Note: If it takes unusually long time to run, you may check the version compatibility, library paths
and preprocessor tags. One of these might be missing or input wrongly. In linux distributions, an
error in the makefile may prolong the processing time and lead to a system freeze / crash.

Praveen Kamath & Liming Jiang Page 63

OpenSees Developers Group IM Ver. 2

Q.The process of debugging is often frustrating. Are there any tips to increase the efficiency?
A. Don’t be intimidated upon seeing a lot of red lines in the output window. READ THE ERROR
CAREFULLY!. Many times, the error may be a syntax error due to a missing bracket, misspelt
Keyword(s), etc. This can be annoying especially when the program is very long. MS Visual studio
identifies such typos by underlining them using error markers. If you hover your mouse pointer
over this curvy line, the detailed information about the error appears at the tooltip.
Utilize the interactive capabilities provided by MS Visual Studio. Right click on the error and
jump to the code line in the program containing error by selecting ‘Go To Location’. This will sift
through all the files in the project and pop out the one that contains the error. This feature can be
repeated for many instances to navigate throughout the framework. Q.I can’t find the source and
header files for example ElasticPPcpp. Where are they located?
A. The files are located in OpenSees\DEVELOPER\material\cpp. Also, the folder DEVELOPER
contains example files for element, integrator, material, recorder and system.
Q.The test file, example1.tcl gives an error while running. What do I do?
A. Check the following:
1. Has the DLL for newly generated element/material been moved into the same folder?
The newly generated DLL file has to be moved into the same folder as example file to be recognized
and linked to the script.
2. Does the example1.tcl file contain the line of code with newly added element / material?
Tcl commands are generated for newly written piece of code. The command line should be
included in the test file.
eg:
uniaxialMaterial ElasticPPcpp 1 3000 0.001
If an error is generated, check if the command line is commented out. Remove the comment (#).
eg:
uniaxialMaterial ElasticPPcpp 1 3000 0.001

Praveen Kamath & Liming Jiang Page 64

REFERENCE

Discovering OpenSees: Surfing the Waves of OpenSees by FMK
J Presentation I J Video I

OpenSees: Compile Under Linux [Debian 7 x32 & 64](in Chinese)

Silvia Mazzoni, Frank McKenna, Michael H. Scott, Gregory L. Fenves, et al., “Open System for
Earthquake Engineering Simulation User Command-Language Manual”. Pacific Earthquake
Engineering Research Centre, University of California Berkeley 2009.

65

http://opensees.berkeley.edu/wiki/index.php/Adding_your_own_code_to_OpenSees,_Jan_2012
http://opensees.berkeley.edu/AddingYourCode.pdf
https://www.youtube.com/watch?v=BaxFLF6A8Rg
http://www.douban.com/group/topic/43117490/
http://opensees.berkeley.edu/wiki/index.php/Adding_your_own_code_to_OpenSees,_Jan_2012
http://opensees.berkeley.edu/wiki/index.php/Adding_your_own_code_to_OpenSees,_Jan_2012
http://opensees.berkeley.edu/wiki/index.php/Adding_your_own_code_to_OpenSees,_Jan_2012
http://opensees.berkeley.edu/wiki/index.php/Adding_your_own_code_to_OpenSees,_Jan_2012

	BRIEF OVERVIEW
	OPENSEES GOALS, FEATURES and MOTIVES
	Goals:
	Features:
	Motive behind open source software development:

	GENESIS OF OPENSEES FRAMEWORK
	PREREQUISITES FOR ASPIRING OPENSEES DEVELOPERS
	ONLINE RESOURCES ON OPENSEES
	Official Webpage

	STRUCTURE OF OPENSEES
	General
	Additional tabs in the API

	DOWNLOAD AND INSTALL MICROSOFT VISUAL STUDIO AND TCL/TK
	Microsoft Visual Studio
	Tickle ToolKit (Tcl/Tk)

	DOWNLOADING OPENSEES SOURCECODE USING TortoiseSVN
	Downloading TortoiseSVN
	Downloading the OpenSees Source Code

	WORKING WITH OPENSEES SOURCE CODES
	COMMON ERRORS IN MS VISUAL STUDIO AND THEIR SOLUTION
	ADDING YOUR OWN CODE TO OPENSEES
	Generating a dynamic link library (*.dll) using Microsoft Visual Studio
	Alternate and simple method to add a new material (with example)
	Testing the Newly Added Material (or a piece of code)

	WORKING WITH `quickMain'
	ADDING A NEW CODE TO OPENSEES (The quickMain Method)
	Basic Steps
	Inheritance diagram of an element class:
	The Element Class:

	Example - Truss2D
	Header
	Implementation
	Include Directives
	Static Variables
	Constructors
	Destructor
	Methods dealing with nodes
	Methods dealing with current state
	Methods to return Tangent Matrix
	Methods to return resisting force
	Methods dealing with output
	Methods dealing with databases and parallel processing

	ADDING A Tcl COMMAND TO OPENSEES
	Creating your own command
	Example for adding Tcl commands for fire models

	RUNNING OPENSEES IN LINUX
	General Linux Commands (useful while running OpenSees)
	Identity used for obtaining permissions or permission types
	Permission identity for user groups
	Permutation of numbers used to set permissions

	Installing Necessary Packages to run OpenSees
	Adding Your Own Code to OpenSees

	FAQ

