An integrated computational environment for simulating structures in real fires

Liming Jiang(Presenter) and Asif Usmani School of Engineering, The University of Edinburgh, UK

BRE CENTRE for FIRE SAFETY ENGINEERING

With acknowledgements to (other previous and current PhD students): Jian Zhang, Yaqiang Jiang, Jian Jiang, Panagiotis Kotsovinos, Shaun Devaney, Ahmad Mejbas Al-Remal, & the IIT Roorkee and Indian Institute of Science teams, and China Scholarship Council!

& special acknowledgement to Frank McKenna at University of California, Berkeley for

OpenSees@Bristol University

Introduction

Background | Review | Motivation

2001-09-11 WTC COLLAPSE

Why some structures collapse and others don't in large fires ?

Do we have nice numerical tools for simulating structures in fires?

Key components of simulating structures in fire

temperature evolution

to the point of collapse

The "spectrum" of modelling

The "spectrum" of modelling | computational

The "spectrum" of modelling | multi-hazard

Is deterministic analysis satisfactory in this context?

Determine the probability of failure

The "spectrum" of modelling | probabilistic-whole life

Life-cycle analysis

The "spectrum" of modelling

Integrated computational environment for structures in fire

This is only part of the big picture

Structures in fires

Effect of fire on structures

- 2. Thermally induced deformation
- 3. Restraint effects
- 4. Effect of fire history

Material Structural steel stress-strain behaviour

Source: ENV 1993-1-2:1995 (S235 steel)

Material | Siliceous concrete stress-strain behaviour

Source: ENV 1992-1-2:1995

Thermally induced deformation | Thermal expansion

- \circ Uniform temperature rise ΔT ;
- Unrestrained;
- Thermal expansion:

Thermal expansion coefficient of steel ? ≈1.2e-5

 $\varepsilon_T = \alpha \Delta T$

Thermally induced deformation | Thermal bowing

1. Thermal gradient (T_{y}) over the depth,

$$T_{y} = \frac{T_2 - T_I}{d}$$

2. A uniform curvature (ϕ) is induced along the length,

 $\phi = \alpha T_{,y}$

3. Curvature reduces the distance between the ends. Interpreted as a contraction strain ε_{ϕ} (analogous to the thermal expansion strain ε_T earlier),

$$\mathbf{\varepsilon}_{\mathbf{\phi}} = 1 - \frac{\sin\frac{\mathbf{1}_{\mathbf{\phi}}}{2}}{\frac{\mathbf{1}_{\mathbf{\phi}}}{2}}$$

 Simply supported beam subjected to a uniform thermal gradient:

Restraint effects

Thermal expansion with ends restrained against translation

restrained against translation P Uniform temperature rise ΔT $E_{t} = E_{T} + E_{m} = 0$ $E_{T} = -E_{m}$ $P = EAEm = - EAET = - EA\alpha\Delta T$ O Stocky beam (Yielding): The visid temperature increment ΔT T P ield strength :300 Mpa Elastic Modulus: 2e5Mpa

The yield temperature increment ΔT_y $\Delta T_y = \frac{q}{E}$ Vield temperature increment :125 oC Uniform temperature gradient $T_{,y}$

• Slender beam (Buckling):

$$\Delta T_{\rm cr} = \frac{\pi^2}{\alpha \lambda^2}$$

Figure 14: Beam with finite rotational restraint with a uniform thermal gradient

Restraining moment in the rotational springs

□ Thermal bowing with ends

$$M_k = \frac{EI\alpha T_{,y}}{\left(1 + \frac{2EI}{k_r t}\right)}$$

r is the radius of gyration

 λ is the slenderness ratio $(\frac{l}{r})$

l is interpreted as the effective length

Effect of fire history on response

Observation

Fire heats steel, steel loses stiffness & begins to lose strength at temperatures above 400°C with only half the strength remaining at 550°C

Solution

Protect all steel for a *lc*

Issues

- 1. How long should a str
- Cause (heating) and € and displacements) w structures such as

but not for

Why do we need an "integrated computational environment"?

Current widespread practice is "**prescriptive**" (standard fire + isolated member)

Built-environments are getting **MORE COMPLEX and dense** creating higher risk (consequences of disaster are increasing) => "alternative" or **performance** based engineering (PBE) approaches

Even when PBE approaches are used (on rare occasions), in general **uniform compartment fires** are assumed (a single compartment temperature at a given instant in time – no spatial variation): oversimplification at best – wrong at worst!

But even if one wanted to make a realistic estimate of the fire, there are **no tools to simulate the whole process**, (if commercial vendors make them they would be too expensive – furthermore researchers will have no control over the tools)

Yes it is very unlikely that such an environment will be used in routine engineering – but routine engineering can benefit from research to create a **better understanding of structural response in real fires** – IF ONLY we had such a tool! Currently the only way to do a fully coupled simulation is to "conduct an experiment"

Integrated computational environment for structures in fire

Integrated computational environment

Current development of OpenSees

We extend OpenSees

https://www.wiki.ed.ac.uk/display/opensees

	University of Edinburgh
	OpenSees
	Developers Group
he Open System for Earthquake Eng DpenSees bout OpenSees at UoE he OpenSees developers group base	Command manual Demonstration examples in the sc Downloading stexecutable application capability in OpenSees
	 Browsing source code

A detailed description of all the new or modified classes developed for enabling thermomehcanical analyses in OpenSees.

Publications

0

Links to publications by the group are provided here.

Download

An executable version of OpenSees compiled for use in Windows can be downloaded and source codes developed can be browsed or downloaded. We'll update all the bug-fixing issues on that page.

OpenSees development for Structure in Fire

• Scheme for Modelling Structure in fire

SIFBuilder

SIFBuilder

✓ Developed for creating large models ✓ Driven by Tcl

✓ Minimum input required

Geometry information -XBays,Ybays,Storeys

Structural information -Material, Section

Loading information -Selfweight, Horizontal loading -Fire action

Fire modelling

Fire modelling

Uniform fire?

- ✓ Standard fire: ISO-834 fire curve
- ✓ Hydro-carbon fire: EC1
- ✓ Empirical Parametric fire: EC1 Parametric fire model

non-uniform fire?

- ✓ EC1 Localised fire
- ✓ Alpert ceiling jet model
- ✓ Travelling fire

Potential abilities

- Connected with FDS
- ✓ We never close the door -localised heat flux input

Heat transfer

Heat transfer and thermo-mechanical analyses

- ✓ Still under developing
- ✓ Tcl commands available
- ✓ Easy to extend

Heat flux BCs

- Convection, radiation, prescribed heat fluxes

HT materials

- CarbonSteelEC3, ConcreteEC2
- Steel ASCE
- easy to extend the library,
- Entries for conductivity, specific heat

HT elements

- 1D, 2D, 3D heat transfer elements
- □ HT recorders (for structural analyses)

❑ Simple Mesh

- I Beam, Concrete slab, Composite beam

Tcl commands for Heat transfer analysis

Initialization of heat transfer module HeatTransfer 2D<3D>;

-- To activate Heat Transfer module

Definition of Heat Transfer Materials HTMaterial CarbonSteelEC3 1;. HTMaterial ConcreteEC2 2 0.5;

OpenSees — Open System For Earthquake Engineering Simulation Realise Earthquake Engineering Messarch Center — 2.4.8 (>) Copyright 1979, 2000 The Bogen of the University of California (Copyright and Disclaimer & http://www.berkeley.edu/OpenSees/copyright.html) (ThermalVersion.0.1, developed by University of Edinburgh) enters J. MealTanafer 20 fortil: error (2000): pregress abouting due to window-CL Sevens Definition of Section or Entity
 HTEntity Block2D 1 0.25 0.05 \$sb 0.10;

Meshing the entity

#SimpleMesh \$MeshTag \$HTEntityTag \$HTMaterialTag \$eleCtrX \$eleCtrY; SimpleMesh 1 1 1 10 10;

Definition of fire model FireModel Standard 1;

Heat transfer analysis

• Strategy for efficient heat transfer modelling

Idealised uniform fires, T(t):

Heat flux input is spatially invariant over structural member surfaces;

2D heat transfer analysis for beam section, 1D for concrete slab

Strategy for efficient heat transfer modelling
 Idealised non-uniform fires, T(x,y,z,t):

 $\odot \text{Heat}$ flux input varies with the location ;

Composite beam: a series of 2D sectional analyses

•Concrete slab : using localised1D Heat Transfer analyses

• Composite Beam- 2D approach VS.3D approach

Composite beam

Length: 3m

Steel beam: UB 356 × 171 × 51

Concrete slab: 1.771× 0.1m

Material with Thermal properties according to EC2 and EC3

EC localised fire

Heat release rate: 3MW

Diameter: 1m, Ceiling height:3m

Fire origin: under the beam end

What we found

Exactly the same temperature profile!

- Concrete Slab
 - 1D approach VS.3D approach

Concrete slab:

Dimension: 5m×5m× 0.1m

Material with Thermal properties according to EC2

EC localised fire

Heat release rate: 5MW

Diameter: 1m

Ceiling height:3m

Fire origin: under the slab corner

What we found:

Localised 1D analysis produces identical temperature profile as 3D analysis

• Thermo-mechanical classees

□ HT recorders (for structural analyses)

Thermomechanical materials
 With temperature dependent properties
 Thermomechanical sections
 Beam sections & membrane plate section
 Thermomechanical elements
 Disp based beam elements, MITC4 shell elements
 Loading:Thermal action
 -2D&3D BeamThermalAction, ShellThermalAction

- NodalThermalAction

• Tcl commands for material, section, and elements

```
uniaxialMaterial SteelECThermal $matTag <EC3> $fy $E0;
. . .
section FiberThermal $secTag {
Fibre..
Patch..
Layer...
. . .
element dispBeamColumnThermal $eleID $node1 $node2 $NumIntgers
$secTag $GeomTransTag;
. . .
block2D $nx $ny $NodeID0 $EleID0 ShellMITC4Thermal $SecTag {
. . . .
```

• Tcl commands for defining beam thermal actions

□ Uniform along beam length, non-uniform through depth

• Tcl commands for defining beam thermal actions

□ Importing external temperature history file

• Tcl commands for defining beam thermal actions

• Tcl commands for defining beam thermal actions

□ ThermalAction for 3D I section beams

Examples [Available@UoE Wiki]

Examples-Simply supported beam

- A simply supported steel beam;
- Uniform distribution load q= 8N/mm
- Uniform temperature rise ΔT;
- Using FireLoadPattern

element dispBeamColumnThermal 1 1 2 5 \$section 1;

 Temperature-time curve defined by FireLoadPattern:

Examples-Simply supported beam

Examples-Restrained Beam under thermal expansion

```
2D elements, Fixed ends;
•
  Element 1 with \Delta T \neq 0, only one free DOF at Node 3
   The effects of Thermal expansion;
                                                                    (2)
                                                           1
                                                                                0.1m
-stiffness degradation, strength loss;
                                                         \Lambda T \neq 0
                                                                   \Delta T = 0
                                                                              01m
-and restraint effects:
                                                                    1m
                                                          1m
set secTag 1;
                                           set secTag 1;
 section FiberThermal $secTag {
                                           section FiberThermal $secTag {
         fiber -25 0 5000 1;
                                                    fiber -25 -25 2500 1;
         fiber 25 0 5000 1;
                                                    fiber -25 25 2500 1;
  };
                                                    fiber 25 -25 2500 1;
                                                    fiber 25 25 2500 1;
                                           };
pattern Plain 1 Linear {
                                           pattern Plain 1 Linear {
eleLoad -ele 1 -type -beamThermal
                                           eleLoad -ele 1 -type -beamThermal 1000
1000 - 50 1000 50
                                           -50 1000 50
};
                                           };
```

Examples-Restrained Beam under thermal expansion

- 2D elements, Fixed ends;
- Element 1 with $\Delta T \neq 0$, only one free DOF at Node 3
- The effects of Thermal expansion;
 stiffness degradation, strength loss;
 and restraint effects;

(2)

 $\Delta T = 0$

1m

0.1m

0.1m

1

 $\Delta T \neq 0$

1m

3

11

Examples-Composite Beam

Composite beams with column connected

Thank you ! Questions?

AN INTEGRATED COMPUTATIONAL ENVIRONMENT FOR SIMULATING STRUCTURES IN REAL FIRES

LIMING JIANG AND ASIF USMANI 23 JUNE 2014