
With acknowledgements to:
Jian Zhang, Yaqiang Jiang, Jian Jiang, Panagiotis Kotsovinos,
Shaun Devaney, Ahmad Mejbas Al-Remal, & Praveen Kamath & the IIT Roorkee and Indian
Institute of Science teams, and China Scholarship Council!

& special acknowledgement to:
Frank McKenna at University of California, Berkeley for OpenSees

OpenSees Workshop
Brunel, May 2016

 Presented by Dr Liming Jiang & Xu Dai

OPENSEES
WORKSHOP
DAY 2
1. Framework of OpenSees and how to compile it
2. How to add your new class
3. How to add your new project
4. How to add Tcl commands for your project

Day2: Framework & building OpenSees

OPENSEES
WORKSHOP

Temporary Source Code Package:
(link has been sent through email)
https://dl.dropboxusercontent.com/u/66579010/BrunelTest.zip

OpenSees Framework

 A framework is NOT an executable;

 It is a set of cooperating software components for building applications in a
specific domain;

 It is a collection of abstract and derived classes;

 Loose-coupling of components within the framework is essential for
extensibility and re-usability of the applications

OpenSeeS WOrkShOp
BRUNEL

Finite Element Model
Nodes
Elements
Boundary conditions
Load

OpenSees for Fire
 Started at Edinburgh University since 2009;

 Based on a group of PhD students’ work;

 Developed for modelling ‘Structures in Fire’;

OpenSeeS WOrkShOp
BRUNEL

SIFBuilder

Fire

Heat Transfer

Thermo-
mechanical

User-friendly interface for creating (regular)
structural models and enable consideration of
realistic fire action

Models of fire action (only idealised fires), i.e.,
Standard fire, Parametric fire, EC1 Localised fire,
Travelling fire

Heat transfer to the structural members due to
fire action

Structural response to the elevated temperatures

OpenSeeS WOrkShOp
BRUNEL

OpenSees Framework

actor

analysis

cblas convergence cssparse damage database

domain element

graph handler

HTMain

material

matrix modelbuilder OpenSees OpenSeesTk

OpenSeesTk

fire HeatTransfer

Optimization quickMain

recorder

reliability renderer

string superLU system tagged

tcl

utility

SIFBuilder

31 Projects in OpenSees

OpenSeeS WOrkShOp
BRUNEL

OpenSees Framework

analysis domain element HTMain

material

fire HeatTransfer

recorder tcl SIFBuilder

Modified/New Projects in OpenSees

Node
Load

LoadPattern

BeamColumn
Shell FireModel

Implementation
of HT

Uniaxial Mat
ND Mat

Tcl entry

OpenSeeS WOrkShOp
BRUNEL

Building OpenSees

project

object1.h

object1.cpp

object2.h

object2.cpp

…

object1.obj

object2.obj

…

project

Step1:Compilation

Compiler

OpenSeeS WOrkShOp
BRUNEL

Building OpenSees

object1.obj

object2.obj

…

project

Step2:Assembling

Assembler
Project.lib

Static library

Project1.lib
 …

 …
Project_n.lib

Application

Step3:Link

OpenSees

Building OpenSees
OpenSees Source Code Package

DEVELOPER EXAMPLES

MAKES

OTHER

PACKAGES

SCRIPTS

SRC WIN32

Simplified
developer
test tool Make tool

definition

3rd party
Solver

QuickMain
Sourcecode!

.h & .cpp
Makefile

Project files
for VS

bin

lib

obj

proj

OpenSees.exe

Debug/Release
compiled objects

Assembled libraries

Project files

opensees.sln Solution for Visual
Studio

Building OpenSees

If you want to build it in
Linux or MacOS?

Makefile.def SRC

GCC
&

GNU Make

make

OTHER

Building OpenSees

Makefile.def

o Program directory

o Paths (definition of SRC and OTHER directories)

o Libraries (definition of library location)

o Compilers (Compiler location & compiler and linker tags)

o Compilation behaviour

o Other supporting libraries

o Include files

GNU Make is a tool which controls the generation of executables and other non-source
files of a program from the program's source files.

Make gets its knowledge of how to build your program from a file called the makefile,
which lists each of the non-source files and how to compute it from other files. When
you write a program, you should write a makefile for it, so that it is possible to use
Make to build and install the program.

GNU Make

Building OpenSees

This is what
Visual Studio

looks like!

Using Windows PC

Building OpenSees

Give it a try to build
your own OpenSees…

Day2: Add a new class to the framework

OPENSEES
WORKSHOP

Add a new class to the framework:

a material class example

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

1. Find the material class which is most similar to the class you are

trying to create

ElasticMaterialNewThermal

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

2. Find the ‘similar’ material class file location:

ElasticMaterialNewThermal

OpenSees/SRC/material/uniaxial

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

3. Make a copy of the header and source files in the same folder and

rename them as: ElasticMaterialNewThermal.cpp and ElasticMaterialNewThermal.h.

ElasticMaterialNewThermal

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

ElasticMaterialNewThermal

5. Add the two newly created files to the material project in the

solution explorer:

Right click on uniaxial add Existing Item.

Select the source and header files for the new material from OpenSees\SRC\material\

uniaxial and click Add.

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

ElasticMaterialNewThermal

6. Open both the source and header files in a text editor

(Notepad ++ or Microsoft Visual Studio editor) and make

changes: replace the keyword ElasticMaterialThermal to

ElasticMaterialNewThermal.

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

ElasticMaterialNewThermal

7. Add a couple of lines for the newly created material in

TclModelBuilderUniaxialMaterialCommand.cpp.

declaration:

extern void *OPS NewElasticMaterialNewThermal(void);

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

8. Add a couple of lines for the newly created material in

TclModelBuilderUniaxialMaterialCommand.cpp.

In function: TclModelBuilderUniaxialMaterialCommand()

 else if (strcmp(argv[1],”ElasticNewThermal”) == 0) {

 void *theMat = OPS NewElasticMaterialNewThermal();

 if (theMat != 0)

 theMaterial = (UniaxialMaterial *)theMat;

 else

 return TCL ERROR;}

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

ElasticMaterialNewThermal

9. Rebuild only the material project:

Right click on material Project Only Rebuild Only material.

OpenSeeS WOrkShOp
BRUNEL

Add a new material class

ElasticMaterialNewThermal

Day2: How to add a project

OPENSEES
WORKSHOP

 What in a new Project?

How to Add a Project

project

object1.h

object1.cpp

object2.h

object2.cpp

…

Prepare the files, and save them in the right folder

OpenSees/SRC/<your project>

In a header file (.h)

Inclusion of other header files
Declaration of variables
Declaration of functions

In a source file (.cpp)

Inclusion of header files
Constructors of class
Destructor of class
Definition of functions

Framework
Hierarchy

• Add a new Project to OpenSees

How to Add a Project

 Create a project folder in

 OpenSees/win32/proj/<your project>

 Add this new project

 --if it is completely new, headers and sources

have to be added;

 --if it is not, files are imported automatically as

the structure has been defined in the proj file

 Project property (right click at the project->configuration properties)

 -Project properties are defined for debug and release separately

 -Add the dependencies(additional included directories)

 subfolders in SRC/<project name>

 -Preprocessor tag(_SIFBUILDER, _HEATTRANSFER)

 #ifdef could selectively activate code block

 -output as multi-threaded debug for debugging build

 -multi-thread for release

How to Add a Project

How to Add a Project

How to Add a Project

 Possible Errors

Compiler Linker

o Not including right headers

o Deleted variables (destructor)

o Mismatched returned value

from a function

o Mismatched constructor and

usage of a class

o Incorrect project properties

o Not including right libraries

o Referenced function can not

be found because it’s not

correctly defined

o Library is not produced

o Linker property of OpenSees

project

Day2: How to add Tcl commands

OPENSEES
WORKSHOP

• The original Tcl offers a large collection of commands
 -File operation: eof, pwd, append,open, etc.
 -Control flow: if, for, switch, while, etc.
 -Those commands are well documented at the page:

 http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm

• The Tcl library
 -The library provides an interface to add extended Tcl commands
 -Tcl library was imported to the computer when the installation of

Tcl happened.

Add Tcl Commands

http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm

• Tcl.h and Tcl.lib
 -Tcl is installed in C:\Program Files\Tcl in Windows
 -Tcl.h is a header file which has prototypes of the built-in

functions.
 -The functions are enclosed in the Tcl library.
• Tcl in OpenSees
 -OpenSees inherits the original Tcl commands and extends the
command library.
 -Most of commands are developed within the project tcl
 -The others are located in modelbuilder and sub-projects.

Add Tcl Commands

https://svn.ecdf.ed.ac.uk/repo/see/OpenSeesEd/OpenSees/OpenSees2.4.0/SRC/tcl/

Add Tcl Commands

Extended Tcl command

• “Source” command
 - Global commands are located in commands.cpp
 in the function of OpenSeesAppInit(Tcl_Interp *interp)

 Tcl_CreateObjCommand(interp, "source", &OPS_SourceCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc*)NULL);

 int OPS_SourceCmd(ClientData clientData, Tcl_Interp *interp,
 int argc, Tcl_Obj * const *argv);

int OPS_SourceCmd(
……
…..
}

Commands in Modelbuilder

Modelbuilder is called in commands.cpp to create a
TclModelBuilder Class

TclModelBuilder has a huge constructor, which contains
the creation of modelbuilder-related commands

The strategy of extending Tcl commands is creating a global
command in commands.cpp, then putting the definition of new
commands in the constructor of a TclModelBuilder type class.

“HeatTransfer” ->TclHeatTransferModelBuilder

Extended Tcl command

• Creating your own command
-i.e. in TclHeatTransferModule class
1) Using Tcl_CreateCommand to add a new command;
Tcl_CreateCommand(interp, "HTMaterial", (Tcl_CmdProc*)
TclHeatTransferCommand_addHTMaterial,(ClientData)NULL, NULL);

2)Specify the Procedure corresponding to this command;
Int TclHeatTransferCommand_addHTMaterial(ClientData clientData, Tcl_Interp *interp,
int argc, TCL_Char **argv)

if (theTclHTModule == 0) {
 opserr << "WARNING current HeatTransfer Module has been destroyed - HTMaterial\n";
 return TCL_ERROR;
}
if (theHTDomain == 0) {
 opserr << "WARNING no active HeatTransfer Domain - HTMaterial\n";
 return TCL_ERROR;
 }
HeatTransferMaterial* theHTMaterial=0;
int HTMaterialTag = 0;
if (Tcl_GetInt(interp, argv[2], &HTMaterialTag) != TCL_OK) {
opserr << "WARNING:: invalid material tag for defining HeatTransfer material: " << argv[1] << "\n"; return TCL_ERROR;
 }
 //Adding CarbonSteelEC3
if (strcmp(argv[1],"CarbonSteelEC3") == 0) {
 theHTMaterial = new CarbonSteelEC3(HTMaterialTag);
}
if(theHTMaterial!=0){
 theTclHTModule->addHTMaterial(*theHTMaterial);}
else{
opserr<<"WARNING: TclHTModule fail to add HeatTransfer Material: "<<argv[1]<<endln;}
return TCL_OK;
}

Extended Tcl command
• Creating your own command
-i.e. in TclHeatTransferModule class
1) Classes are mostly designed as tagged objects.
2) TclModelBuilder or domain classes holds the tags of materials, elements,etc.
theHTMaterials = new ArrayOfTaggedObjects(32);
3) ArraryOfTaggedObjects stores tags and correponding pointers to the objects.
theHTMaterial = new CarbonSteelEC3(HTMaterialTag);
4)Adding and returning the object pointer.
theTclHTModule->addHTMaterial(*theHTMaterial);
HeatTransferMaterial* TclHeatTransferModule->getHTMaterial(int tag)

Extended Tcl command

• Commonly used functions
1) Tcl_GetInt(interp, argv[2], &HTMaterialTag)
2) if (strcmp(argv[1],"CarbonSteelEC3") == 0)
3) opserr<<"WARNING: TclHTModule fail to add Simple Mesh:
"<<argv[1]<<endln;
4) Argc, argv[]
 Node 1 1 0;

http://www.tcl.tk/man/tcl8.5/TclLib/GetInt.htm

	Slide Number 1
	Slide Number 2
	Day2: Framework & building OpenSees
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Day2: Add a new class to the framework
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Day2: How to add a project
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Day2: How to add Tcl commands
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Extended Tcl command
	Slide Number 39
	Extended Tcl command
	Slide Number 41
	Extended Tcl command
	Extended Tcl command

