

FACULTY OF CONSTRUCTION AND ENVIRONMENT 建設及環境學院



Research Center for Fire Safety Engineering 火災安全工程研究中心



# 12<sup>th</sup> International Conference on Structures in Fire SiF2022, Hong Kong

# OpenSees Workshop

# Modelling timber structural members in fire

Cheng Chen

PhD Student

Supervised by Dr. Liming Jiang

Department of Building Environment and Energy Engineering

Research Centre for Fire Safety Engineering, PolyU

cheng363.chen@connect.polyu.hk



















3







# Contents



- **Development** of layer-based heat transfer model for timber in fire
  - Case 1: Timber section exposed to fires
- Development of thermo-mechanical model for timber members in fire
  - Constitutive model for timber
  - Mechanical properties of timber at elevated temperature
  - Zone-based thermal action for timber beams
  - Modelling procedure in OpenSees for fire for timber members in fire
  - Case 2: Fire resistance of timber members exposed to fires
- Demonstration
  - > Case 3: The composite member (Timber concrete composite floor system, TCC) in realistic fire scenarios







# 1. Development of layer-based heat transfer model for timber in fire

# R







#### Layer model

- Wet wood
- Dry wood
- Char layer
- Ash layer

#### $\Box$ Layer thermal properties model ( $k, \rho, C_p$ )

- Temperature dependent
- Layer state dependent

#### **Charring heat model**

- During the timber charring
- Releasing heat
- Most heat to environment





# 2. Development of thermo-mechanical model for timber members in fire



### 2.1 Constitutive model for timber



#### A constitutive model for timber

- Typical anisotropic material (Stress direction)
- L, R, T direction
- Elastic-plastic damage (Compressive zone)
- Brittle damage (Tensile zone)



| Node | Strain                                        | Stress (MPa)                    |
|------|-----------------------------------------------|---------------------------------|
| 1    | $arepsilon_1 = rac{0.85 	imes f_{c,0}}{E_c}$ | $\sigma_1 = 0.85 	imes f_{c,0}$ |
| 2    | $\varepsilon_2 = 0.925 	imes \varepsilon_0$   | $\sigma_2 = f_{c,0}$            |
| 3    | $arepsilon_3=1.075	imesarepsilon_0$           | $\sigma_3 = f_{c,0}$            |
| 4    | $arepsilon_4 = 1.700 	imes arepsilon_0$       | $\sigma_4=0.85	imes f_{c,0}$    |
| 5    | $\varepsilon_5 = 0.01$                        | $\sigma_{5}=0.85	imes f_{c,0}$  |

#### Constitutive model developed by Glos [11]

- Linearisation of the compressive zone (By Hartnack [12])
- Rapid decline of tensile stress within a small strain range (Considering computational convergence)

# 2. Development of thermo-mechanical model for timber members in fire

2.2 Mechanical properties of timber at elevated temperature



#### **Eurocode 5 Annex B3**

- Reduction factors
- Before drying and after charring
- Maximum temperature co-works with the heat transfer model to prevent backward state change of timber layers when temperature declines
- Limitations induced by the limited test data and the linear interpolation imposed

### 2.3 Zone-based thermal action for timber beams



- a) Temperature profile of timber beam with three-side fire exposure
- b) Zone-based thermal action
- c) Cell interpolation for timber fibre temperature



Function (genInterpolation) will be automatically performed to determine the fibre temperature within each cell of the grid

$$\begin{cases} T_{zi-1} = T_{(i+5*j-6)} + \left(\frac{fiberLoc_y - y_{i-1}}{y_i - y_{i-1}}\right) \times \left(T_{(i+5*j-1)} - T_{(i+5*j-6)}\right) \\ T_{zi} = T_{(i+5*j-5)} + \left(\frac{fiberLoc_y - y_{i-1}}{y_i - y_{i-1}}\right) \times \left(T_{(i+5*j-5)} - T_{(i+5*j)}\right) \\ T_{fiber} = T_{zi-1} + \left(\frac{fiberLoc_z - z_{i-1}}{z_i - z_{i-1}}\right) \left(T_{zi} - T_{zi-1}\right) \end{cases}$$

It is interpolated first along the y-axis and then along the z-axis to calculate the temperature at the fibres [Ref.10]

# 2. Development of thermo-mechanical model for timber members in fire

2.4 Modelling procedure in OpenSees for fire for timber members in fire [Ref.10]

Currently, the Tcl interpreter as a default choice is employed to interpret the input script to modelling procedures of OpenSees.



Material degradation of timber fibers

Strain

0.010

# **Case 2 – Fire resistance of timber members exposed to fires**





#### CLT panel tests [13]

- Size: Cross-section of 600 mm × 150 mm
- Moisture content: 12%

Enough for heat transfer analysis

- **Density:** 452 kg/m<sup>3</sup>
- Layers: Five layers (odd) and the thicknesses were symmetric, 42 mm (L), 19 mm (T), 28 mm (L), 19 mm (T), and 42 mm (L)
- Loading method: Two-point loading (uniformly distributed load of 6 kN/m)
- **Fire condition:** Standard fire furnace heating at the bottom
- Layer Material: Spruce (C24 strength grade)

| C24<br>grade | Ultimate compressive<br>strength (MPa) | epsc0        | Elastic modulus<br>under tension (MPa) | Elastic modulus under<br>compression (MPa) | Ultimate tensile<br>strength (MPa) |
|--------------|----------------------------------------|--------------|----------------------------------------|--------------------------------------------|------------------------------------|
| L layer      | 52.74                                  | $4.93e^{-3}$ | 12564                                  | 12564                                      | 41.80                              |
| T layer      | 5.30                                   | $3.50e^{-2}$ | 120                                    | 120                                        | 4.20                               |

## 3. Demonstration



# Case 3 – The composite member (TCC) in realistic fire scenarios



# References



- 1. https://www.designbuild-network.com/projects/mjosa-tower-mjostarnet/
- 2. https://www.treehugger.com/everything-old-new-again-t-building-minneapolis-4855499
- 3. Kotsovinos, Panagiotis, et al. "Fire Dynamics Inside a Large and Open-Plan Compartment with Exposed Timber Ceiling and Columns: CodeRed #01." Fire and Materials, 2022, <a href="https://doi.org/10.1002/fam.3049">https://doi.org/10.1002/fam.3049</a>.
- 4. https://www.hagerty.co.uk/articles/fire-destroys-austrias-prized-motorcycle-museum/
- 5. https://www.visordown.com/news/general/top-mountain-crosspoint-museum-burns-down-over-200-historic-motorcycles-lost
- 6. https://ztc.lv/en/prefabricated-wood-houses/clt-wood-house/
- 7. CEN, EN 1991-1-2:2002, Eurocode 1. Actions on Structures. General Actions on Structures Exposed to Fire, European Committee for Standardization (CEN), Brussels, 2002.
- 8. Zhuojun Nan, et al. Application of travelling behaviour models for thermal responses in large compartment fires. 2022; Volume 134, <a href="https://doi.org/10.1016/j.firesaf.2022.103702">https://doi.org/10.1016/j.firesaf.2022.103702</a>.
- 9. Xing, Zhiyan, et al. "Research on Fire Resistance and Material Model Development of CLT Components Based on OpenSees." JOURNAL OF BUILDING ENGINEERING, vol. 45, 2022, p. 103670-, <u>https://doi.org/10.1016/j.jobe.2021.103670</u>.
- 10. Chen, C, Jiang, L, Qiu, J, Orabi, MA, Chan, WS, Usmani, A. OpenSees development for modelling timber structural members subjected to realistic fire impact. Fire and Materials. 2022; 1-18. doi:10.1002/fam.3115
- 11. Glos P. Zur Bestimmung des Festigkeitsverhaltens von Brettschichtholz bei Druckbeanspruchung aus Werkstoff- und Einwirkungsgro"ssen. Dissertation, TU Munich, Munich, Germany 1978.
- 12. Hartnack R. Langzeittragverhalten von druckbeanspruchten Bauteilen aus Holz. Dissertation 2005.
- 13. Fragiacomo M, Menis A, Clemente I, Bochicchio G, Ceccotti A. Fire Resistance of Cross-Laminated Timber Panels Loaded Out of Plane. J Struct Eng 2013;139:04013018.
- 14. Hadden R, et al. "Effects of Exposed Cross Laminated Timber on Compartment Fire Dynamics." Fire Safety Journal, vol. 91, 2017, pp. 480–489.



# Thanks for your listening



SiF2022, Hong Kong