

SiF2022: OpenSEES Workshop

Session 5: Application of localized fire model for performance-based structural fire design

Zhuojun Nan

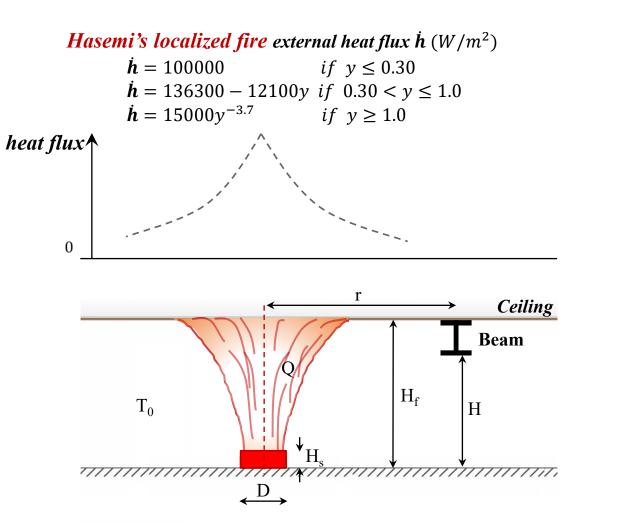
The 12th International Conference on Structures in Fire SiF 2022, Hong Kong

About Me

Zhuojun NAN

- BSc in Civil Engineering, MSc (UoE) in Structural and Fire Safety Engineering
- Graduate Fire Engineer in Arup (Shanghai)
- A PhD candidate at the Hong Kong Polytechnic University
- Research lies in the influence of localised failures on the global response of structures in realistic fires
- Interested in the application of travelling fires and AI for structural fire safety
- Email me at zhuojun.nan@connect.polyu.hk

Outline


- 1. What is the Hasemi's localized fire?
- 2. How to apply localized fire model in performance-based structural fire design?
- 3. How to set-up localized fire model in OpenSEES?
- 4. Can we use GiD to simulate the thermal and structural responses under localised fire scenarios?

Hasemi's localized fire

- Proposed by Yuji Hasemi in 1996^[1]
- BS EN 1991-1-2:2002 (Annex C)^[2]
- Parameters used in Hasemi's localized fire model to calculate heat flux from fire source to the beam.

THE HONG KONG

港理工大學

CHNIC UNIVERSITY

Application of Hasemi's localized fire in PBD

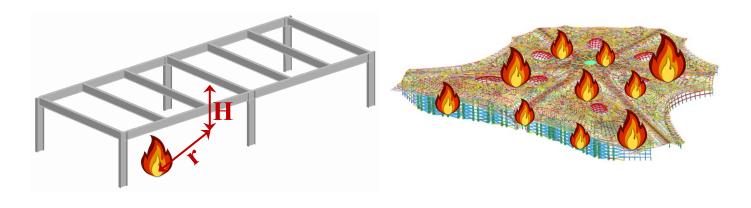
Hasemi's localized fire model has been widely applied as the necessary fire scenario in performance-based structural fire design for practical projects.

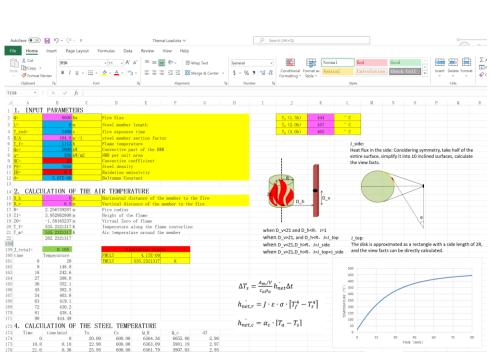
Especially, for large space steel structures, such as...

- Beijing Daxing International Airport 2019
- Hangzhou Xiaoshan International Airport T4 2022
- Hohhot Shengle International Airport 2024
- Wintastar Ice World (Shanghai) 2023

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Enough of this shee


Application of Hasemi's localized fire in PBD


Current method - Excel

Design fire scenarios

- Determine distances (horizontally & vertically) between structural members and fire
- Calculating thermal load on structures (i.e., heat transfer analysis)
- FEM structural response analysis

About

People

Users

SIFBuilder

Examples

Q&A

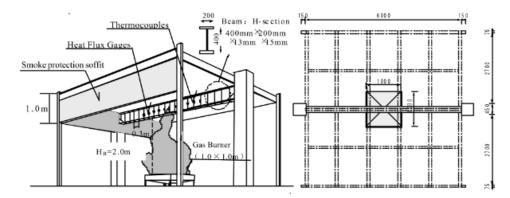
Set up localized fire model in OpenSEES

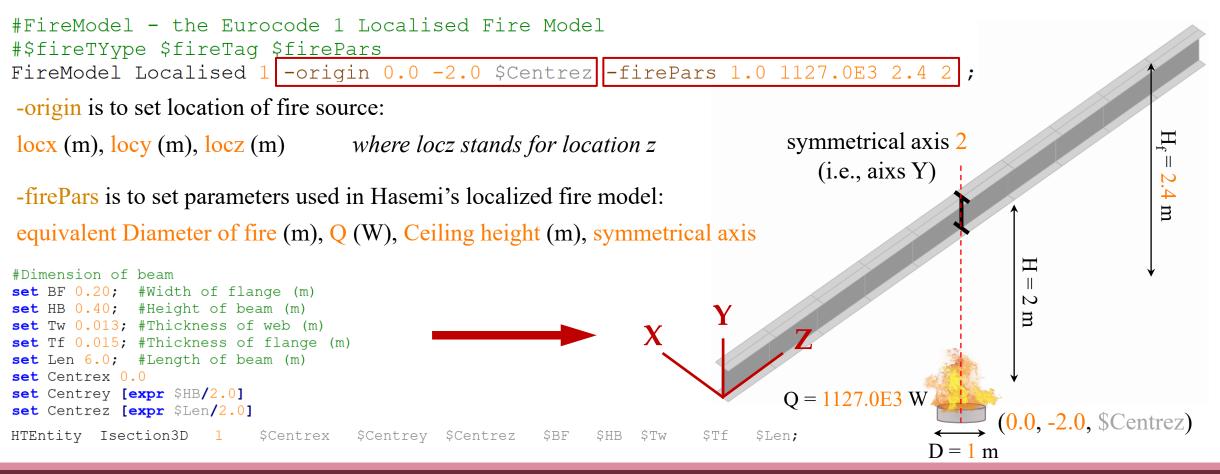
Real-scale localized fire experiments - Takashi Wakamatsu and Yuji Hasemi (1997) Example http://openseesforfire.github.io/Subpages/Examples/HT2 beam.html

OPENSEES FOR FIRE Heat transfer of I-section steel beam subjected to localised fire Back View On Home OpenSees GitHub Developed by Zhuojun Nan Introduction Figure HT2-2 shows a 6m steel beam subjected to a localised fire which is set just under the centre of the beam Heat Transfer This example is established according to the real-scale localised fire tests reported by Wakamatsu and Hasemi Please refer to this paper: Thermal analysis infrastructure in OpenSees for fire and its smart application interface towards natural fire modelling, Fire Technology, 2020 Command manual **OpenSees Model** Type used for this example HT Entity Isection3D, I-section (400mm*200mm*13mm*15mm) Developers Material CarbonSteelEC3 Documents Fire Type Localised fire (1127kW) **Download:** This Example Package

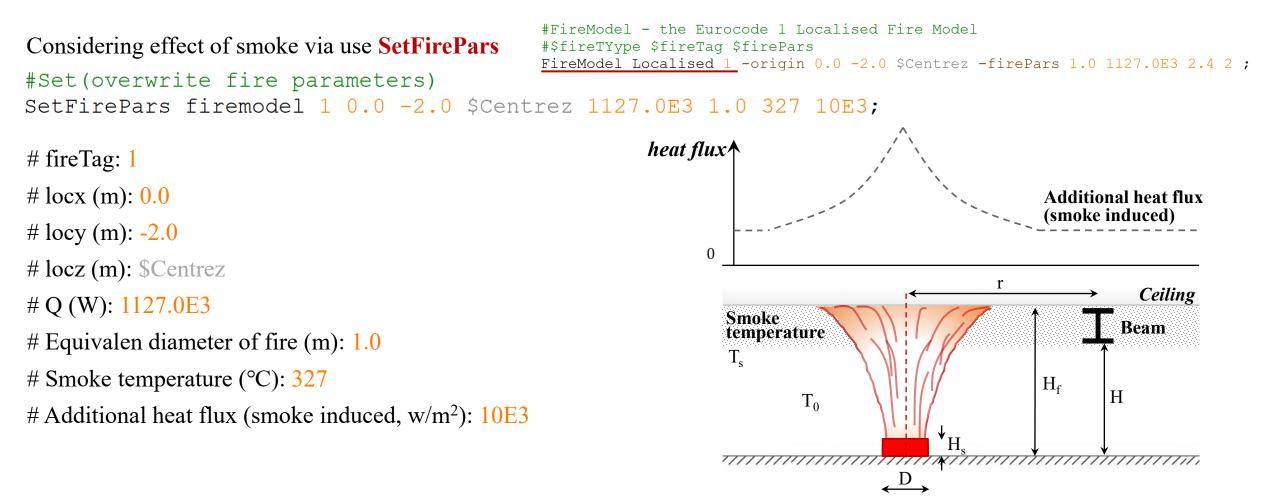
Model Geometry

The construction size of the real-scale localised fire tests is 6.0m × 6.0m × 3.4m (Ceiling Height). The observed steel beam under the centre of the ceiling is a 150mm(H) × 75mm(W) × 5(Web) × 6mm(Flange) H-shape section. A rectangular gas burner 1.0m × 1.0m was setting in the centre of the floor with 1.0m vertical height. This burner used propane as the fuel. The heat release rates are in equivalent to different fire sizes controlled by the volume of flowing gas and assumed complete combustion. *The real-scale localised fire tests without protection soffit.




Figure HT-1: Schematic of steel beam subjected to localised fire(Wakamatsu and Hasemi, 1997)

Set up localized fire model in OpenSEES


Example <u>Tcl</u>

Set up localized fire model in OpenSEES

Set up localized fire model in OpenSEES

Development of Natural Fire Model

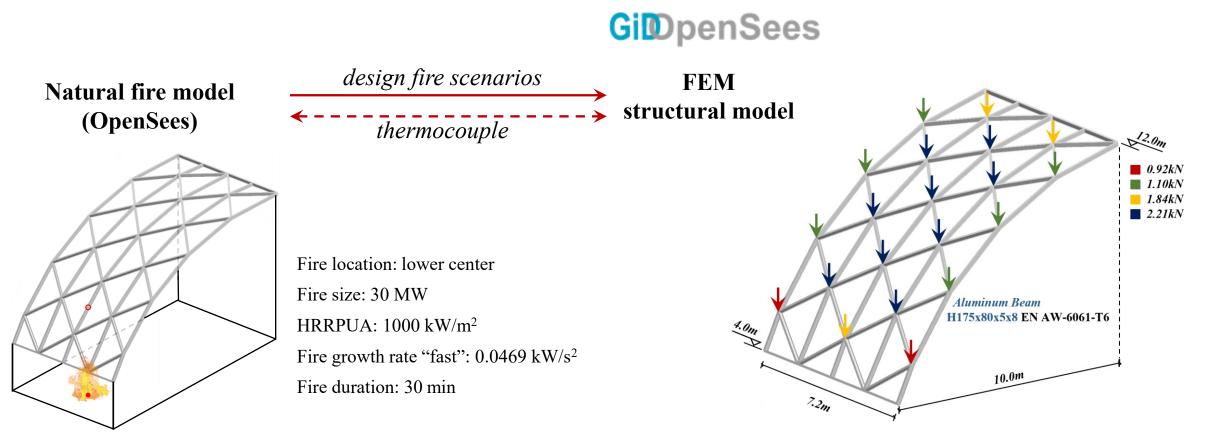
Loading time-variant input fire parameters via external firepsars.dat

#FireModel

#input parameters in firepsars.dat

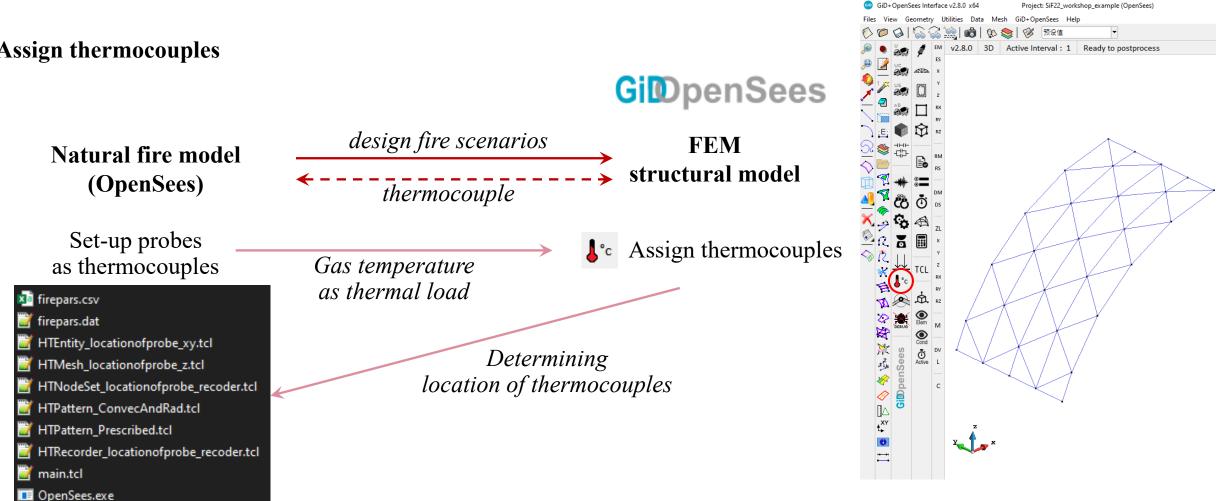
FireModel NaturalFire 6 -firePars -file firepars.dat 2;

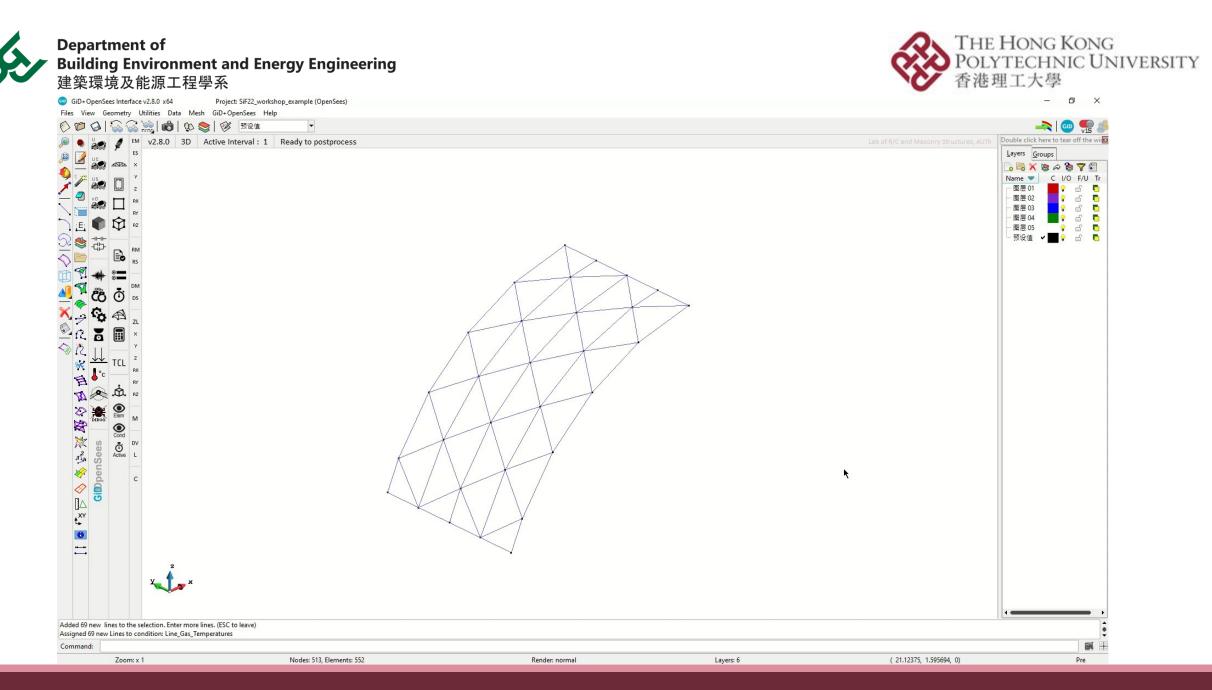
Time	locx	locy	locz	Q	Equivalen diameter of fire	Ceiling height	Smoke temperature	Additional heat flux
(s)	(m)	(m)	(m)	(W)	(m)	(m)	(°C)	(smoke induced, w/m^2)
0	3.6	0	0.292517	0	0	4.689637815	20	(
10	3.6	0	0.292517	4690	0.077275439	4.689637815	20	(
20	3.6	0	0.292517	18760	0.154550878	4.689637815	20	
30	3.6	0	0.292517	42210	0.231826317	4.689637815	20	
40	3.6	0	0.292517	75040	0.309101756	4.689637815	20	
50	3.6	0	0.292517	117250	0.386377195	4.689637815	20	
					6.027484238			
780		-		28533960	•	4.689637815		
	3.6	0					20	
790	3.6	0	0.292517	29270290	6.104759677	4.689637815	20	
		-	0.292517					
790	3.6	0	0.292517 0.292517	29270290	6.104759677	4.689637815	20	
790 800	3.6 3.6	0	0.292517 0.292517 0.292517	29270290 30000000	6.104759677 6.180387232	4.689637815 4.689637815	20 20	
790 800 810	3.6 3.6 3.6	0 0 0	0.292517 0.292517 0.292517	29270290 30000000 30000000	6.104759677 6.180387232 6.180387232	4.689637815 4.689637815 4.689637815	20 20 20	
790 800 810	3.6 3.6 3.6	0 0 0	0.292517 0.292517 0.292517	29270290 30000000 30000000	6.104759677 6.180387232 6.180387232	4.689637815 4.689637815 4.689637815	20 20 20	
790 800 810	3.6 3.6 3.6	0 0 0	0.292517 0.292517 0.292517	29270290 30000000 30000000	6.104759677 6.180387232 6.180387232	4.689637815 4.689637815 4.689637815	20 20 20	
790 800 810	3.6 3.6 3.6	0 0 0	0.292517 0.292517 0.292517 0.292517	29270290 30000000 30000000	6.104759677 6.180387232 6.180387232	4.689637815 4.689637815 4.689637815	20 20 20	
790 800 810 820	3.6 3.6 3.6 3.6	000000000000000000000000000000000000000	0.292517 0.292517 0.292517 0.292517	29270290 30000000 30000000 30000000	6.104759677 6.180387232 6.180387232 6.180387232 6.180387232	4.689637815 4.689637815 4.689637815 4.689637815	20 20 20 20	

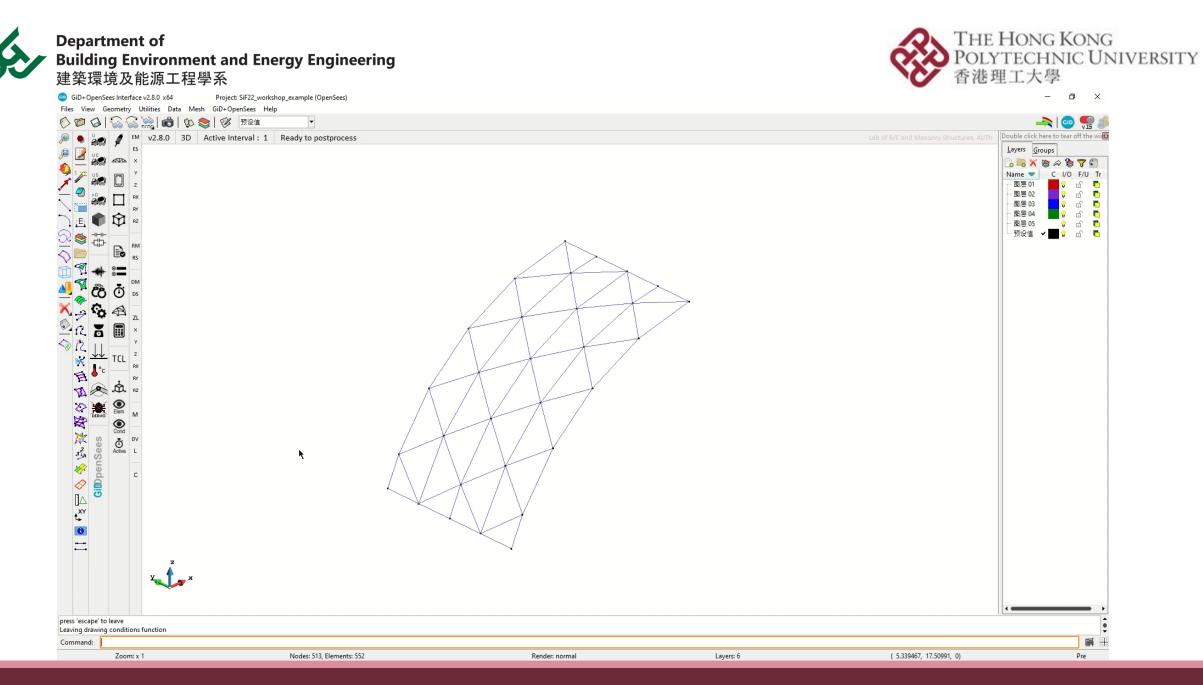


++ NaturalFire.cpp **OPENSEES** FOR FIRE NaturalFire.h **Flexibility & Maneuverability!** firepars.csv firepars.dat # Time (s) ← *Time-variant* # locx (m)
locy (m)
locz (m)
Different fire locations (spatially)
even can applied for travelling fire $\# Q (W) \longleftarrow Growth \& Cooling phases$ # Equivalen diameter of fire (m) # Smoke temperature (°C) \leftarrow Smoke effect # Additional heat flux (smoke induced, w/m^2)

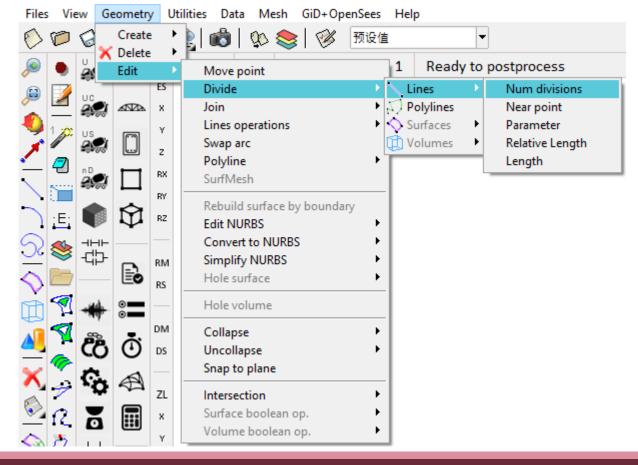
Aluminium reticulated roof structure

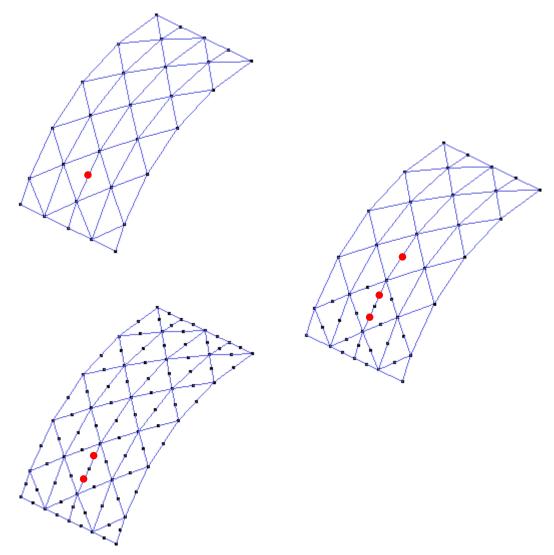



SiF 2022, NAN Zhuojun, PolyU



Assign thermocouples





Set-up of thermocouples depends on the geometry of structure

TCouples.txt - location information of thermocouples HT.dat - parameters for heat transfer analysis

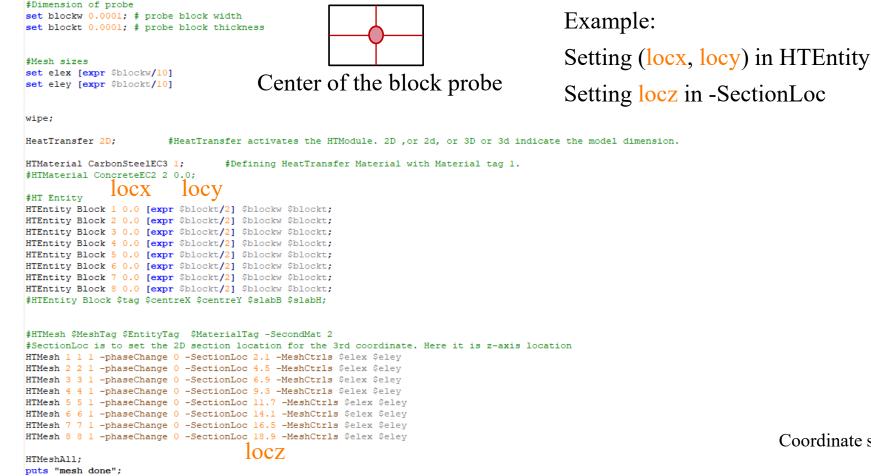
Project: SiF22_workshop_example (OpenSees)						🔤 cas	es		11/2	6/2022 5:05 PM	M			
GiD+OpenSees Help						🔤 log			11/2	6/2022 5:05 PM	M			
A Import .tcl						🔤 The	rmal_load		11/2	6/2022 5:05 PM	M			
<u> </u>						👿 cas	es.dat		8/24	/2022 6:12 PM				
😵 Create .tcl, run analysis and postprocess						🕎 нт.	dat		11/2	6/2022 6:06 PM	N			
FOS Create thermocouples only						📔 Rep	oort.txt		7/5/	2022 4:45 PM				
HT Create heat transfer data only						👿 TCo	ouples.txt		11/2	6/2022 6:06 PM	M			
Create .tcl only						TCo	ouples_simplified	d.txt	7/4/	2022 5:42 PM				
Create and view .tcl only						_								
Run analysis only														
Nun Heat Transfer	&DEVC	TD :	= '1'.		TEMPERATURE		=0 29251	72745680061	0 9 /	4 689637	815135	496/		
United Stratter Postprocess Heat Transfer beam-columns														
Postprocess only	&DEVC	ID :	-		'TEMPERATURE				-					
Run analysis and postprocess	&DEVC	ID :	= '3',	QUANTITY=	'TEMPERATURE	', XYZ	=1.78833	21201875098	,0.9,	7.272795	267089	568/		
	&DEVC	ID :	= '4',	QUANTITY=	'TEMPERATURE	', XYZ	=2.76358	7474912843,	0.900	00000000	00001,	8.406358	0224917	94/
Run HT for parametric cases	&DEVC	ID :	= '5',	QUANTITY=	'TEMPERATURE	', XYZ	=3.87127	9274160793,	0.900	00000000	00001,	9.410900	9376868	44/
Run structural analysis for parametric cases	&DEVC	ID :	= '6',	QUANTITY=	'TEMPERATURE	, XYZ	=5.09447	2989248232,	0.8999	999999999	999999,	10.27106	6431832	777/
	&DEVC	ID :	= '7',	QUANTITY=	'TEMPERATURE	, XYZ	=6.41446	8348725407,	0.8999	999999999	999999,	10.97370	4229265	767/
	&DEVC	ID :	= '8',	QUANTITY=	'TEMPERATURE	, XYZ	=7.81108	51107736465	, 0. 899	999999999	9999998	,11.5080	7232228	947/
	&DEVC	ID :	= '9',	QUANTITY=	'TEMPERATURE	, XYZ	=9.26297	1564690638,	0.8999	999999999	99998,	11.86600	1217145	609/
	&DEVC	ID :	= '10'	, QUANTITY	='TEMPERATUR	ε', ΧΥ	Z=0.2925	17274568006	51,2.69	999999999	9999999	7,4.6896	3781513	5496/

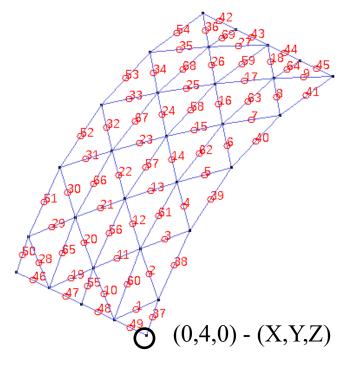
Name

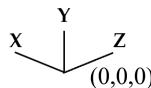
case_input

SCFRI > StrucModel > SiF22_workshop_example.gid > Records

Date modified

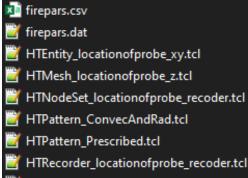

11/26/2022 5:05 PM





Setting probe in Tcl as thermocouples to record gas temperature

#This Tcl file is written for demostrating tcl commands for Heat Transfer module in OpenSees


Coordinate system in OpenSEES for establishing fire scenarios

Setting probe in Tcl as thermocouples to record gas temperature

Natural fire model design fire scenarios (OpenSees)

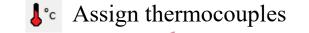
Set-up probes as thermocouples

🥁 main.tcl

📧 OpenSees.exe

A	utoSave 🥑	off) 📙	9-6	~ -		firepars.csv 🗸		♀ Searc	h (Alt+Q)		
Fil	e Hor	ne inse	rt Pag	e Layout	Formula	s Data Revi	iew View	Help			
2		Calibri	Calibri ~ 11 ~ A			A^ A [×] ≡ ≡ ≡ ≫ × 80 Wrap Text			eneral ~		
Pa	~	B I	<u>u</u> ~ <u>H</u>	~ 🔗 ~	<u>A</u> ~	≡≡∣∈ ≖	🔛 Merge &	Center 👻	\$ ~ % 9 🔝 🐝	C Fo	
Clip	pboard 5	1	Font		5	Align	iment	5	Number 5		
N1	3	• : >	< 🗸	$f_{\mathcal{K}}$							
A	А	В	С	D	E	F	G	н	1		
						Equivalen	Ceiling	Smoke			
	Time	locx	locy	locz	Q	diameter of fire	height	temperatur	Additional heat flux		
1	(s)	(m)	(m)	(m)	(W)	(m)	(m)	(°C)	(smoke induced, w	/m^	
2	0	3.6	0	0.292517	0	0	4.689637815		20		
3	10	3.6	0	0.292517	4690	0.077275439	4.689637815		20		
4	20	3.6	0	0.292517	18760	0.154550878	4.689637815		20		
5	30	3.6	0	0.292517	42210	0.231826317	4.689637815		0		
-	40	3.6	0	0.292517	75040	0.309101756	4.689637815		20		
6		3.6	0	0.292517	117250	0.386377195	4.689637815		20		

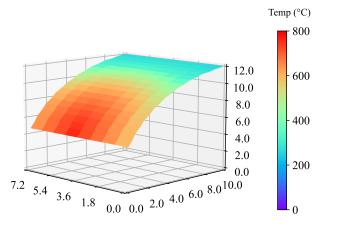
Fire location: lower center Fire size: 30 MW HRRPUA: 1000 kW/m²


Fire growth rate "fast": 0.0469 kW/s²

tempLoc1.out

firepars.dat

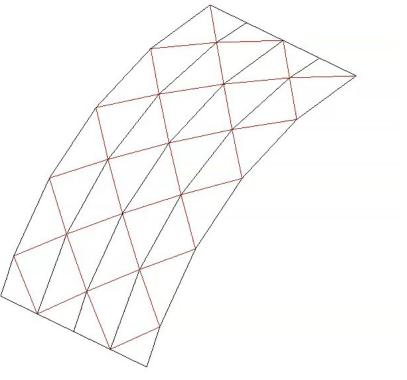
Fire duration: 30 min


firepars.csv

as thermal load

Determining location of thermocouples Gas temperature

tempLoc2.out
 tempLoc3.out
 tempLoc4.out
 tempLoc5.out
 tempLoc6.out
 tempLoc7.out
 tempLoc8.out
 tempLoc9.out
 tempLoc9.out
 tempLoc10.out


Thermal & Structural analysis in GiD

Heat transfer analysis and structural analysis of structure under localized fire

Project: SiF22_workshop_example (OpenSees) GiD+OpenSees Help Import .tcl

- Create thermocouples only
- Create heat transfer data only
- 🥵 Create .tcl only
- Create and view .tcl only
- Run analysis only
- 👌 Run Heat Transfer
- Postprocess Heat Transfer beam-columns
- Postprocess only
- Run analysis and postprocess

Deformation (x1): Nodes//Displacements of Interval 2 - Static, step 0.

Application of Localized Fire Model for Performance-based Structural Fire Design

Relevant publications & links

Development of Gid

- Orabi MA, Khan AA, Jiang L, Yarlagadda T, Torero J, Usmani A. Integrated nonlinear structural simulation of composite buildings in fire. Eng Struct 2022;252:113593.
- https://github.com/Anwar8/gidopensees

Considering smoke effect in localized fire model

 Khan AA, Nan Z, Jiang L, Gupta V, Chen S, Khan MA, et al. Model characterisation of localised burning impact from localised fire tests to travelling fire scenarios. J Build Eng 2022;54:104601.

Application of natural fire model

 Nan Z, Khan AA, Jiang L, Chen S, Usmani A. Application of travelling behaviour models for thermal responses in large compartment fires. Fire Saf J 2022;134:103702.

Aluminium reticulated roof structure (Day1 Parallel Session B1-2 11:30-11:45)

 Nan Z, Orabi MA, Zhang X, Khan AA, Huang X. Rapid Forecasting of the Structural Failure of a Full-Scale Aluminium Alloy Reticulated Shell Structure in Fire. 12th Int. Conf. Struct. Fire, Hong Kong, China: 2022.

SureFire

Smart Urban Resilience and Firefighting

www.polyu.edu.hk/beee/web/PolyUFire/index.html